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The success of the Apgar score demonstrates the astounding power of an appro-
priate clinical instrument. This down-to-earth book provides practical advice, 
underpinned by theoretical principles, on developing and evaluating measurement 
instruments in all fields of medicine. It equips you to choose the most appropriate 
instrument for specific purposes.

The book covers measurement theories, methods and criteria for evaluating 
and selecting instruments. It provides methods to assess measurement properties, 
such as reliability, validity and responsiveness, and to interpret the results. Worked 
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Preface

Measuring is the cornerstone of medical research and clinical practice. 
Therefore, the quality of measurement instruments is crucial. This book 
offers tools to inform the choice of the best measurement instrument for a 
specific purpose, methods and criteria to support the development of new 
instruments, and ways to improve measurements and interpretation of their 
results.

With this book, we hope to show the reader, among other things,

why it is usually a bad idea to develop a new measurement instrument•	
that objective measures are not better than subjective measures•	
that Cronbach’s alpha has nothing to do with validity•	
why valid instruments do not exist and•	
how to improve the reliability of measurements•	

The book is applicable to all medical and health fields and not directed 
at a specific clinical discipline. We will not provide the reader with lists of 
the best measurement instruments for paediatrics, cancer, dementia and 
so onÂ€– but rather with methods for evaluating measurement instruments 
and criteria for choosing the best ones. So, the focus is on the evaluation 
of instrument measurement properties, and on the interpretation of their 
scores.

This book is unique in its integration of methods from different disciplines, 
such as psychometrics, clinimetrics and biostatistics, guiding researchers 
and clinicians to the most adequate methods to be used for the development 
and evaluation of measurements in medicine. It combines theory and prac-
tice, and provides numerous examples in the text and in the assignments. 
The assignments are often accompanied with complete data sets, where the 
reader can really practise the various analyses.



Prefacex

This book is aimed at master’s students, researchers and interested practi-
tioners in the medical and health sciences. Master’s students on courses on 
measurements in medical and health sciences now finally have a textbook 
that delivers the content and methods taught in these courses. Researchers 
always have to choose adequate measurement instruments when designing a 
study. This book teaches them how to do that in a scientific way. Researchers 
who need to develop a new measurement instrument will also find adequate 
methods in this book. And finally, for medical students and clinicians inter-
ested in the quality of measurements they make every day and in their 
sound interpretation, this book gives guidelines for assessing the quality of 
the medical literature on measurement issues.

We hope that this book raises interest in and improves the quality of 
measurements in medicine. We also hope you all enjoy the book and like 
the examples and assignments. We appreciate feedback on this first edition 
and welcome suggestions for improvement.

The authors
December 2010
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1

Introduction

1.1â•‡ Why this textbook on measurement in medicine?

Measurements are central to clinical practice and medical and health research. 
They form the basis of diagnosis, prognosis and evaluation of the results of 
medical interventions. Advances in diagnosis and care that were made pos-
sible, for example, by the widespread use of the Apgar scale and various 
imaging techniques, show the power of well-designed, appropriate measures. 
The key words here are ‘well-designed’ and ‘appropriate’. A decision-maker 
must know that the measure used is adequate for its purpose, how it com-
pares with similar measures and how to interpret the results it produces.

For every patient or population group, there are numerous instruments 
that can be used to measure clinical condition or health status, and new ones 
are still being developed. However, in the abundance of available instru-
ments, many have been poorly or insufficiently validated. This book pri-
marily serves as a guide to evaluate properties of existing measurement 
instruments in medicine, enabling researchers and clinicians to avoid using 
poorly validated ones or alerting them to the need for further validation.

When many measurement instruments are available, we face the chal-
lenge of choosing the most appropriate one in a given situation. This is the 
second purpose of this book. Researchers need systematic methods to com-
pare the content and measurement properties of instruments. This book 
provides guidelines for researchers as they appraise and compare content 
and measurement properties.

Thirdly, if there is no adequate measurement instrument available, a new 
one will have to be developed, and it should naturally be of high quality. 
We describe the practical steps involved in developing new measurement 
instruments, together with the theoretical background. We want to help 

 

 

 

 



Introduction2

researchers who take the time and make the effort to develop an instrument 
that meets their specific needs.

Finally, evaluation of the quality of measurements is a core element of 
various scientific disciplines, such as psychometrics, epidemiology and bio-
statistics. Although methodology and terminology vary from discipline to 
discipline, their main objective is to assess and improve measurements. The 
fourth reason for this book is therefore to integrate knowledge from dif-
ferent disciplines, in order to provide researchers and clinicians with the 
best methods and ways to assess, appraise, and improve the methodological 
quality of their measurements.

1.2â•‡ Clinimetrics versus psychometrics

Psychometrics is a methodological discipline with its roots in psychological 
research. Within the field of psychometrics, various measurement theories 
have been generated, such as classical test theory and item response theory 
(Lord and Novick, 1968; Nunnally, 1978; Embretson and Reise, 2000). These 
theories will be further explained in Chapter 2. Cronbach and Spearman 
were two famous psychometricians. Psychometric methods are increasingly 
applied to other fields as well such as medicine and health.

The term ‘clinimetrics’ is indissolubly connected to Feinstein, who 
defined it as ‘measurement of clinical phenomena’. He focused on the con-
struction of clinical indexes, and promoted the use of clinical expertise, 
rather than statistical techniques, to develop measurement instruments 
(Feinstein, 1987).

However, in this book we avoid using the terms psychometrics and clini-
metrics. Our basic viewpoint is that measurements in medicine should be 
performed using the most adequate methods. We do not label any of these as 
psychometric or clinimetric methods, but we do indicate which underlying 
theories, models and methods are applied.

1.3â•‡ Terminology and definitions

Literature on measurement can be confusing because of wide variation in 
names given to specific measurement properties and how they are defined. 
Often, many synonyms are used to identify the same measurement property. 
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For example, the measurement property reliability is also referred to as 
reproducibility, stability, repeatability and precision. Moreover, different 
definitions are used for the same property. For example, there are many def-
initions of responsiveness, which results in the use of different methods to 
evaluate responsiveness, and this may consequently lead to different conclu-
sions (Terwee et al., 2003).

This variation in terminology and definitions was one of the reasons to 
start an international Delphi study to achieve consensus based standards 
for the selection of health measurement instruments (the COSMIN study) 
(Mokkink et al., 2010a). The COSMIN study aimed to reach consensus 
among approximately 50 experts, with a background in psychometrics, 
epidemiology, statistics, and clinical medicine, about which measurement 
properties are considered to be important, their most adequate terms and 
definitions and how they should be assessed in terms of study design and 
statistical methods.

We adhere to the COSMIN terminology throughout this book. Figure 1.1 
presents the COSMIN taxonomy, showing terms for various measurement 
properties and their inter-relationships. In chapters focusing on measure-
ment properties, we indicate other terms used in the literature for the same 
properties, and also present the COSMIN definitions.

1.4â•‡ Scope of measurements in medicine

The field of medicine is extremely diverse. There are so many different 
diseases, and we all know that health is not just the absence of disease. The 
World Health Organization (WHO) officially defined health as ‘a state of 
complete physical, mental, and social well-being, not merely the absence 
of disease or infirmity’. Evaluating the effects of treatment or monitoring 
the disease course includes assessment of disease stages, severity of com-
plaints and health-related quality of life. To broaden the scope further, 
measurements do not only include all outcome measurements, but also 
measurements performed to arrive at the correct diagnosis and those done 
to assess disease prognosis. Measurements are performed in clinical prac-
tice and for research purposes. This broad scope is also expressed in the 
types of measurements. Measurements vary from questions asked about 
symptoms during history-taking, to physical examinations and tests, 
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laboratory tests, imaging techniques, self-report questionnaires, and so 
on. The methods described in this book apply to all measurements in the 
field of medicine.

1.5â•‡ For whom is this book written?

This book is for clinicians and researchers working in medical and health 
sciences. This includes those who want to develop or evaluate measurement 
instruments themselves, and those who want to read and interpret the litera-
ture on them, in order to select the most adequate ones.

Reliability

Internal
consistency Reliabilitya

Measurement
errora

Responsiveness

Responsiveness

Interpretability

a(test–retest, inter-rater, intra-rater); b(concurrent validity, predictive validity)

Validity

Construct
validity

Criterion
validityb

Structural
validity

Hypotheses
testing

Cross-cultural
validity

Content
validity

face
validity 

Figure 1.1	 COSMIN taxonomy of relationships of measurement properties. Reprinted from 
Mokkink et al. (2010a), with permission from Elsevier.

 

 

 



1.6â•‡ Structure of the book5

We present the theoretical background for measurements and measure-
ment properties, and we provide methods for evaluating and improving the 
quality of measurements in medicine and the health sciences.

A prerequisite for a correct understanding of all concepts and principles 
explained in this book is basic knowledge about study designs (i.e. cross-
sectional and longitudinal), essentials of diagnostic testing and basic know-
ledge of biostatistics (i.e. familiarity with correlation coefficients, t-tests and 
analysis of variance).

This book is not directed at any specific clinical discipline and is applic-
able to all fields in medicine and health. As a consequence, the reader will 
not find a list of the best measurement instruments for paediatrics, cancer or 
dementia, etc., but a description of how measurement instruments should 
be developed, and how measurement properties should be assessed and can 
be improved.

1.6â•‡ Structure of the book

The book starts with introductory chapters focusing on measurement 
Â�theories and models. In particular, Chapter 2 describes the essentials of the 
classical test theory and the item response theory. Chapter 3 describes the 
development of a measurement instrument.

Chapters 4–7 then focus on measurement properties. Each chapter 
describes the theoretical background of a measurement property, and shows 
how this property is assessed. The structure of a measurement instrument is 
discussed, and the principles of factor analysis and internal consistency are 
introduced in Chapter 4. Reliability and validity are presented in ChaptersÂ€5 
and 6. In health care, changes in disease or health status over time are 
important, so responsiveness is discussed in Chapter 7.

Interpretation of the results of measurements deserves its own chapter. 
This aspect is often neglected, but is ultimately the main purpose of measure-
ments. In Chapter 8 we discuss the interpretability of the scores and change 
scores on measurement instruments, paying special attention to minimal 
important changes within patients, and response shift.

Finally, Chapter 9 puts all the pieces together by describing how to 
perform a systematic review of measurement properties. This is a system-
atic review of the literature to identify instruments relevant for specific 
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measurement situations and to assess the quality of their measurement 
properties.

1.7â•‡ Examples, data sets, software and assignments

We use real examples from research or clinical practice and, where possible, 
provide data sets for these examples. To enable readers to practise with the 
data and to see whether they can reproduce the results, data sets and syn-
taxes can be found on the website www.clinimetrics.nl.

For statistical analyses, we used the Statistical Package for the Social 
Sciences (SPSS). For analyses that cannot be performed in SPSS, we suggest 
alternative programs.

Each chapter ends with assignments related to the theories and examples 
covered in that chapter. Solutions to these assignments can also be found on 
the website www.clinimetrics.nl.
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2

Concepts, theories and models, and 
typesÂ€of measurements

2.1â•‡ Introduction

This chapter forms the backbone of the book. It deals with choices and 
Â�decisions about what we measure and how we measure it. In other words, 
this chapter deals with the conceptual model behind the content of the 
measurements (what), and the methods of measurements and theories on 
which these are based (how). As described in Chapter 1, the scope of meas-
urement in medicine is broad and covers many and quite different concepts. 
It is essential to define explicitly what we want to measure, as that is the 
‘beginning of wisdom’.

In this chapter, we will introduce many new terms. An overview of these 
terms and their explanations is provided in Table 2.1.

Different concepts and constructs require different methods of meas-
urement. This concerns not only the type of measurement instrument, for 
example an X-ray, performance test or questionnaire, but also the measure-
ment theory underlying the measurements. Many of you may have heard 
of classical test theory (CTT), and some may also be familiar with item 
response theory (IRT). Both are measurement theories. We will explain the 
essentials of different measurement theories and discuss the assumptions to 
be made.

2.2â•‡ Conceptual models

First, we will look at the concepts to be measured. Wilson and Cleary (1995) 
presented a conceptual model for measuring the concept health-related qual-
ity of life (HRQL). Studying this model in detail will allow us to distinguish 

 

 

 

 

 

 



Concepts, theories and models8

different levels of clinical and health measurements (Figure 2.1). The levels 
range from the molecular and cellular level to the impact of health or disease 
on individuals in their environment and their quality of life (QOL), which 
represents the level of a patient within his or her social environment.

We illustrate this conceptual model, using diabetes mellitus type 2 as an 
example. On the left-hand side, the physiological disturbances in cells, tis-
sues or organ systems are described. These may lead to symptoms that sub-
sequently affect the functional status of the patient. For example, in patients 
with diabetes the production of the hormone insulin is disturbed, leading 
to high levels of glucose in the blood. The patient’s symptoms are tiredness 
or thirst. In the later phases of diabetes, there may be complications, such 
as retinopathy, which affects the patient’s vision. Patients with diabetes are 

Table 2.1â•‡ Overview of terms used in this chapter

Term Explanation

Concept Global definition and demarcation of the subject of measurement.
Construct A well-defined and precisely demarcated subject of measurement. 

By psychologists used for unobservable characteristics, such as 
intelligence, depression or health-related quality of life.

Conceptual model Theoretical model of how different constructs within a concept are 
related (e.g. the Wilson and Clearya model of health status).

Conceptual framework A model representing the relationships between the items and the 
construct to be measured (e.g. reflective or formative model).

Measurement theory A theory about how the scores generated by items represent the construct 
to be measured (e.g. classical test theory or item response theory).

Method of measurement Method of data collection or type of measurement instrument used (e.g. 
imaging techniques, biochemical analyses, performance tests, interviews).

Patient-reported 
outcomes

A measurement of any aspect of a patient’s health status that comes 
directly from the patient, without interpretation of the patient’s 
responses by a physician or anyone else.

Non-patient-reported 
outcome measurement 
instruments

All other types of measurement instruments (e.g. clinician-based reports, 
imaging techniques, biochemical analyses or performance-based tests).

Health-related quality  
of life

An individual’s perception of how an illness and its treatment affect the 
physical, mental and social aspects of his or her life.

aâ•‡ See Figure 2.1.

 

 



2.2â•‡ Conceptual models9

also more susceptible to depression. All these symptoms affect a patient’s 
functioning. In the WHO definition of health, functioning encompasses 
all aspects of physical, psychological and social functioning. How patients 
perceive their health and how they deal with their limitations in function-
ing will depend on personal characteristics. Of course, the severity of the 
diabetes will affect the patient’s functioning, but apart from that, a patient’s 
coping behaviour is important. In addition, environmental characteristics 
play a role. For example, how demanding or stressful is the patient’s job, 
and does the work situation allow the patient to adapt his or her activities to 
a new functional status? In HRQL, the factors we have described are inte-
grated. Patients will weigh up all these aspects of their health status in their 
own way. Finally, in a patient’s overall QOL, non-medical factors also play a 
role, such as financial situation or the country of residence. The Wilson and 
Cleary conceptual model illustrates how various aspects of health status are 
inter-related.

Wilson and Cleary developed their model not only to identify different 
levels of health, but also to hypothesize a causal pathway through which dif-
ferent factors influence HRQL. The arrows in the model indicate the most 

Characteristics
of the individual 

Biological and
physiological

variables  

Symptom
status 

Overall
quality of

life

General
health

perceptions

Functional
status 

Non-medical
factors 

Characteristics of
the environment 

Personality
Motivation 

Values
Preferences 

Psychological
supports 

Social and
economic
supports

Symptom
amplification 

Social and
psychological

supports  

Figure 2.1	 Relationships between measures of patient outcome in an HRQL conceptual 
model. Wilson and Cleary (1995), with permission. All rights reserved.

 



Concepts, theories and models10

important flows of influence, but Wilson and Cleary acknowledge that there 
may be reciprocal relationships. For example, patients with diabetes may 
become depressed because of their functional limitations and poor HRQL. 
Distinguishing different levels ranging from the cellular level to the soci-
etal level, looking from left to right in Figure 2.1, allows to focus on several 
measurement characteristics.

2.3â•‡ Characteristics of measurements

From diagnosis to outcome measurements
When diagnosing a disease, we often focus on the left-hand side of the 
Wilson and Cleary model, while for the evaluation of outcomes of disease or 
treatment the levels on the right-hand side are more relevant. The diagnosis 
of many diseases is based on morphological changes in tissues, disturbances 
in physiological processes, or pathophysiological findings. For example, a 
high blood glucose level is a specific indicator of diabetes because it reflects 
a dysfunction in insulin production. Other diseases, such as migraine and 
depression, can only be diagnosed by their symptoms.

Functional status is frequently considered an outcome of a disease. 
However, physiotherapists and rehabilitation physicians may consider it a 
diagnosis, because their treatment focuses on improvement of functioning. 
Further to the right in the model, perceived health and HRQL are typically 
outcome measures. None the less, disease outcomes can also be assessed by 
parameters on the left-hand side. For example, the effect of cancer therap-
ies on the progression of cancer growth is usually evaluated on the basis of 
morphological or biochemical parameters at tissue level. At the same time, 
symptoms that bother patients and affect their HRQL are of interest. This 
example shows that the outcome of cancer is assessed at different levels, ran-
ging from biological parameters to HRQL. However, diagnoses are usually 
found on the left-hand side of the model.

From clinician-based to patient-based measurements
Measurements performed either by clinicians or by patients themselves have 
different locations in the Wilson and Cleary model. Measurements of aspects 
on the left-hand side of Figure 2.1, either for the purpose of diagnosis or 

 

 

 

 

 

 



2.3â•‡ Characteristics of measurements11

for outcome assessment, are usually performed by clinicians. Signs may be 
observed by a clinician, for example a swelling in the neck, but symptoms such 
as pain or dizziness can only be reported by patients themselves. Functioning 
is assessed either by the clinician or patient. For example, physiotherapists 
often use standardized performance tests to assess physical functioning, but 
it can also be assessed by means of a questionnaire in which patients are 
asked about the extent to which they are able to perform indicated activ-
ities. If information is obtained directly from the patient, we refer to this as 
a patient-reported outcome (PRO). PROs are defined as any reports coming 
directly from patients about how they function or feel in relation to a health 
condition and its therapy, without interpretation of the patient’s responses by 
a clinician or anyone else (Patrick et al. 2007). Symptoms, perceived health 
and HRQL are aspects of health status that can only be assessed by PROs, 
because they concern the patient’s opinion and appraisal of his or her current 
health status. Therefore, the right-hand side of the Wilson and Cleary model 
consists exclusively of PROs.

From objective to subjective measurements
The terms objective and subjective are difficult to define, but the main issue 
is the involvement of personal judgement. In objective measurement, no 
personal judgement is involved, i.e. neither the person who measures nor 
the patient being measured can influence the outcome by personal judge-
ment. In subjective measurement, either the patient being measured or the 
person performing the measurement is able to influence the measurement 
to some extent. The assessment of perceived health and HRQL requires sub-
jective measurements, whereas laboratory tests are mostly objective meas-
urements. Objective measurements are mainly found on the left-hand side 
of the Wilson and Cleary model, among the biological and physiological 
variables. Symptoms are, by definition, subjective measures. In medical jar-
gon, a symptom is defined as a departure from normal function or feeling 
that is noticed by a patient, indicating the presence of disease or abnormal-
ity. A sign is an objective indication of some medical fact or characteristics 
that may be detected by a physician during physical examination of a patient 
(e.g. a swelling of the ankle). Moreover, the word ‘sign’ is also used as a syno-
nym for ‘indication’.
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The distinction between objective and subjective measurements is not as 
sharp as it seems, however, and many measurements are incorrectly labelled 
as objective. Many imaging tests need a clinician or another expert to read 
and interpret the images. The degree of swelling in an ankle is also a subject-
ive observation made by a clinician. Laboratory tests become less objective 
if, for example, the analyst has to judge the colour of a urine sample. These 
examples show that many test results have to be interpreted by looking, lis-
tening, smelling, etc., all of which make use of a clinician’s organs of sense. 
All these measurements therefore have a subjective element. Instructions 
for a physical performance test need to be given by a physiotherapist, and 
the level of encouragement may vary greatly. In a cognitive or physical per-
formance test the instructions and support given by the instructor may 
influence the motivation and concentration of the patient who is perform-
ing the test. Here the influence of the person instructing the measurement 
introduces a subjective element in these performance-based tests. Hence, 
we also find subjective measurements on the left-hand side of Figure 2.1. 
Objective measurements are often mistakenly considered better than sub-
jective measurements. In later chapters, we will discuss this issue in much 
more detail.

From unidimensional to multidimensional characteristics
On the left-hand side of Figure 2.1 there are many examples of unidimen-
sional characteristics (e.g. pain intensity, blood pressure or plasma albu-
min level). These characteristics represent only a single aspect of a disease. 
On the right-hand side, we find more complex characteristics, such as per-
ceived health status or HRQL. These encompass not only physical aspects, 
but also psychological and social aspects of health, and because they cover 
more aspects, they are called multidimensional constructs. Therefore, 
the constructs on the right-hand side of the Wilson and Cleary model 
must be measured with instruments that cover all relevant aspects of the 
construct.

From observable to non-observable characteristics
Looking from left to right in Figure 2.1, the measurement of observable and 
non-observable characteristics can be distinguished. Many biological and 
physiological variables are obtained by direct measurement. For example, 
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the size of a tumour is directly observable with an adequate imaging tech-
nique. However, among symptoms and in the functional status we already 
find non-observable characteristics, such as pain, fatigue and mental func-
tioning. Health perception and QOL are all non-observable constructs. So, to 
measure these non-observable characteristics a new strategy must be found. 
Not surprisingly, psychologists have been very active in developing methÂ�
ods to measure unobservable characteristics, because these occur so often 
in their field. These non-observable characteristics are referred to as ‘con-
structs’ by psychologists. They developed CTT, a strategy that enabled them 
to measure these non-observable constructs indirectly:Â€ namely by meas-
uring observable characteristics related to the non-observable constructs. 
This approach results in multi-item measurement instruments. However, 
not all multi-item measurement instruments function in this way, as we will 
explain in the next section. In this book, we use the term construct for a 
well-defined and precisely demarcated subject of measurement, and there-
fore not only for non-observable ones (see Table 2.1).

2.4â•‡ Conceptual framework:Â€reflective and formative models

When working with multi-item measurement instruments, we need to 
know the underlying relationship between the items and the construct to 
be measured. This underlying relationship is what we mean by the term 
conceptual framework. The conceptual framework is important because it 
determines the measurement theory to be used in the development and 
evaluation of the instrument (Fayers et al., 1997). Fayers et al. introduced 
the distinction between reflective and formative models in the field of 
QOL. In this section, we will first explain that distinction, and then Â�discuss 
its consequences for measurement theories. However, implications for the 
development and evaluation of various measurement properties will be dis-
cussed in Chapters 3 and 4.

In its simplest form the relationships between constructs and items are 
represented by Figures 2.2a and 2.2b. In the conceptual framework depicted 
in Figure 2.2(a), the construct manifests itself in the items; in other words, 
the construct is reflected by these items. This model is called a reflective 
model (Edwards and Bagozzi, 2000), and the items are called effect indicators 
(Fayers et al., 1997). An example of a reflective model is the measurement 
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of anxiety. We know that anxious patients have some very specific feelings 
and characteristics, or specific behaviour. In patients who are very anx-
ious, all these items will be manifest to a high degree, and in mildly anxious 
patients we will find these characteristics to a lesser degree. By observing or 
asking about these characteristics we can assess the presence and degree of 
anxiety.

In Figure 2.2(b) the construct is the result of the presented items. This 
model is called a formative model:Â€the items ‘form’ or ‘cause’ the construct 
(Edwards and Bagozzi, 2000) and are called causal indicators (Fayers et al., 
1997) or causal variables. An example of a formative model is the measure-
ment of life stress. We measure the amount of stress that a person experi-
ences by measuring many items that all contain stress-evoking events. All 
events that will cause substantial stress should be represented by the items, 
so that all these items together will give an indication of the amount of stress 
that a person experiences.

How can we decide whether the relationship between items and construct 
is based on a reflective or a formative model? The easiest way to find out is 
to do a ‘thought test’:Â€do we expect the items to change when the construct 
changes? This will be the case for anxiety, but not necessarily for life stress. 
For example, when a person loses his or her job, life stress will probably 
increase. However, when life stress increases, a person does not necessarily 
lose his or her job. If a change in the construct does not affect all items, the 
underlying model is probably formative. However, in the case of anxiety, if 
a patient becomes more anxious, we would expect the scores for all items to 

a: Reflective model b: Formative model

Worrying
thoughts 

Restlessness

PanicAnxiety 

Job loss

Death in the
family 

Divorce

Life
stress 

Items ConstructConstruct Items

Figure 2.2	 Graphical representation of a reflective model (a) and formative model (b).
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increase. This patient will panic more, become increasingly restless, and will 
also have more worrying thoughts. Thus, when change in the construct is 
expected to influence all items, the underlying model is reflective.

The distinction between formative and reflective models is not always 
clear-cut, as the following example will show. The Apgar score was developed 
by Apgar (1953) to rate the clinical condition of a newborn baby immedi-
ately after birth. It consists of five variables:Â€colour (appearance), heart rate 
(pulse), reflex response to nose catheter (grimace), muscle tone (activity) and 
respiration, leading to the acronym Apgar. According to Feinstein (1987), the 
Apgar score is a typical example of a measurement instrument, in which the 
items refer to five different clinical signs that are not necessarily related to 
each other, i.e. corresponding to a formative model. However, it is question-
able whether the Apgar score actually is based on a formative model. If we 
consider the Apgar score as an indication of a premature baby, then it may 
be based on a reflective model, because in premature babies, all the organ 
systems will be less well developed, and the baby may show signs of problems 
in all these systems. This example illustrates that, depending on the under-
lying hypothesized conceptual model, the Apgar score can be considered to 
be based on a formative or reflective model. The example again emphasizes 
the importance of specifying the underlying conceptual model.

Complex constructs, such as QOL, may combine reflective and formative 
elements. For example, Fayers and Hand (1997) depicted a hypothetical con-
ceptual framework of the construct of QOL in patients with cancer. InÂ€the 
lower part of Figure 2.3 there are a number of treatment-related symptoms, 
which result in a lower QOL. The relationship between these symptoms 
(represented by the rectangles) and the construct of QOL is based on a for-
mative model. On the left-hand side, we can see the symptom ‘pain’, which 
may be disease- or treatment-related, but which also affects QOL, based on a 
formative model. The same holds for the relationship on the right-hand side, 
where we see how the consequences of chemotherapy affect QOL. At the top 
of the figure, we see that a low QOL leads to psychological distress, which 
manifests itself in the symptoms presented at the top of the figure. This part 
forms a reflective model.

The chronology of the Wilson and Cleary model can help us to some 
extent to determine the conceptual framework. Measurement of symptoms 
and functional limitations that are consequences of the disease will follow 
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Figure 2.3	 Overview of the relationships between various factors with the construct of QOL. 
The squares represent the items and the circles represent the constructs. Arrows 
running from constructs to items represent reflective models and arrows running 
from items to construct represent formative models. Fayers and Hand (1997), 
with kind permission from Springer Science+Business Media.
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a reflective model, while measurement of the effects these symptoms and 
functional limitations have on general perceived health or HRQL usually 
follows a formative model.

2.5â•‡ Measurement theories

A measurement theory is a theory about how the scores generated by items 
represent the construct to be measured (Edwards and Bagozzi, 2000). This 
definition suggests that measurement theories only apply to multi-item 
instruments. This is true:Â€for single-item instruments no measurement the-
ory is required. However, it should be emphasized that measurement theories 
are not necessary for all multi-item measurement instruments. Only unob-
servable constructs require a measurement theory. For observable charac-
teristics, it is usually obvious how the items contribute to the construct being 
measured and no measurement theory is required. We illustrate this with a 
few examples. Physical activity can be characterized by frequency, type of 
activity and intensity. To obtain the total energy expenditure we know how 
to combine these items. Moreover, for some research questions we are only 
interested in certain types of physical activity or only in the frequency of 
physical activity. To assess the severity of diarrhoea, a clear example of an 
observable characteristic, faecal output can be characterized by frequency, 
amount and consistency. Another example concerns comorbidity, which is 
characterized by the number of accompanying diseases, the type of diseases 
or organ systems involved, and the disease severity or the disability or bur-
den they cause. However, if we talk about comorbidity burden, we move in 
the direction of unobservable constructs.

It is a challenge to measure unobservable constructs. Such constructs 
are often encountered in the psychological and psychiatric disciplines, but 
also when assessing PROs in other medical disciplines. These constructs 
are usually measured indirectly using multiple observable items. In Section 
2.4, we saw that these multi-item instruments need a conceptual framework 
that describes the relationship between the items and the construct to be 
measured. Furthermore, when using multi-item instruments, we also need 
measurement theories to describe the statistical relationships between the 
items and the construct. Therefore, we introduce the basic statistical repre-
sentations of the reflective and formative models in Figure 2.4. The circle 
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represents the unobservable construct, indicated by the Greek letter η (eta). 
The rectangles represent the observable items (e.g. the items in a question-
naire). In the reflective model these are indicated with a Y, because they are 
the consequences of η, whereas in a formative model the rectangles are the 
determinants of η, and are indicated with an X. This convention corresponds 
to Y as the typical notation for dependent variables and X for independent 
variables. We also see in Figure 2.4 that each Y is accompanied by an error 
term ε (the Greek letter epsilon), while in the formative model there is only 
one error term δ (the Greek letter delta), often called the disturbance term.

A measurement theory about how the scores generated by the items 
represent the construct to be measured is thus based on the relationships 
between the Xs and η, or between the Ys and η. There are two well-known 
measurement theories:Â€CTT and IRT. Both apply to reflective models. They 
will be further explained in Sections 2.5.1 and 2.5.2.

For multi-item measurement instruments based on a formative model, 
there are no well-known measurement theories. This does not mean that 
there is no theory at all underlying formative models, but rather that the the-
ories are less well developed (Edwards and Bagozzi, 2000). Therefore, devel-
opment of multi-item instruments based on a formative model is merely 
based on common sense. Feinstein (1987) suggested the term ‘sensibility’ in 
this respect, which he defined as ‘enlightened common sense’ or ‘a mixture 
of ordinary common sense with a reasonable knowledge of pathophysiology 

ε1 ε2 ε3 ε4

Y1

a: Reflective model b: Formative model

Y3 Y4Y2 X2 X3 X4X1

η
η

δ

Figure 2.4	 Conceptual frameworks representing a reflective model (a) and a formative 
model (b).
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and clinical reality’. However, we do not adopt this term, because it would 
falsely suggest that the development and evaluation of measurement 
instruments based on CTT and IRT require no common sense or clinical 
knowledge.

2.5.1â•‡ Classical test theory
We have mentioned CTT as a strategy to measure constructs that are not 
directly observable. CTT was developed in the early twentieth century by 
psychologists such as Spearman and Cronbach (Lord and Novick, 1968). 
Information about an unobservable construct is obtained by measuring items 
that are manifestations of the construct, because these are much easier to cap-
ture. Thus, CTT is suitable for the measurement of constructs that follow a 
reflective model. The basic formula of the CTT (Lord and Novick, 1968) is

Yi = η + εi

in which Yi is the observed score of the item i, η is the ‘true’ score of the 
construct to be measured and εi is the error term for item i. ‘True’ in this 
context refers to the average score that would be obtained if the instrument 
was given an infinite number of times. It refers only to the consistency of 
the score, and not to its validity (Streiner and Norman, 2008). The formula 
expresses that a patient’s item score (the observed score Yi) is the sum of the 
score of the unobservable construct (η) plus the associated unobservable 
measurement error (εi). Sometimes the symbol T, referring to ‘true score’, is 
used in this formula instead of η.

Suppose we want to measure the degree of somatization in a patient who 
visits a general practitioner. To measure the degree of somatization we use 
the ‘somatization’ questionnaire, which is part of the four-dimensional 
symptom questionnaire (4DSQ) (Terluin et al., 2006). This self-reported 
questionnaire consists of 16 items. If a patient scores the first item Y1 of the 
questionnaire, it will give an indication of the degree of somatization of this 
patient, but not a perfect indication. This means that it will be accompanied 
by an error term ε1. The observed score for the second item Y2 can again be 
subdivided into the true score (η) and an error term ε2. All items in the ques-
tionnaire can be seen as repeated measurements of η.

The CTT requires a number of assumptions. Essential assumptions are 
that each item is an indicator of the construct to be measured (reflective 
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model), and that the construct is unidimensional. In our example, all items 
should reflect the patient’s degree of somatization. Another assumption is 
that the error terms are not correlated with the true score, and are not cor-
related with each other. This implies that the average value of the measure-
ment errors (εi’s) approaches 0. These are all very important assumptions. If 
they hold, it means that if we take the average value of Yi over many items 
we approach the true score η. It also implies that the items will correlate to 
some degree with each other and with the total score of the measurement 
instrument.

Measurement instruments that satisfy conditions of the CTT model have 
a number of characteristics that are advantageous for the evaluation of their 
measurement properties, as will be shown in later chapters. More details 
about CTT can be found in classical textbooks written by Lord and Novick 
(1968) and Nunnally (1978), and in a recent overview by DeVellis (2006).

2.5.2â•‡ Item response theory
IRT is also a measurement theory that can be applied when the underlying 
model is reflective. IRT was developed in the 1950s, by among others the 
psychologist Birnbaum. Lord and Novick’s book (1968) contains a few chap-
ters on IRT, written by Birnbaum. In IRT, constructs were originally called 
latent traits. Latent means ‘hidden’ and the term ‘trait’ finds its origin in 
psychology. IRT is also frequently applied in education, where the unob-
servable constructs are often called ‘latent ability’. IRT models are typically 
used to measure a patient’s ability, for example, physical ability or cognitive 
ability. The construct (i.e. ‘ability’) is usually denoted with the Greek letter 
θ (theta) in an IRT model, whereas it is denoted by η in CTT. This is just 
another notation and name for the same construct.

Take as an example the walking ability of a group of patients. We assume 
that this is a unidimensional construct, which might range from ‘unable to 
walk’ to ‘no limitations at all’. Each patient has a location on this continuum 
of walking ability. This location is called the patient location (or ability or 
endorsement). IRT models make it possible to estimate the locations (θ) of 
patients from their scores on a set of items. Typical of IRT is that the items 
also have a location on the same scale of walking ability. This location is 
called the item location (or item difficulty). Measurements based on the IRT 
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model therefore enable us to obtain information about both the location of 
the patient and the location of the items (Embretson and Reise, 2000; Hays 
et al., 2000).

Before we explain IRT further, we will describe Guttman scales, because 
these form the theoretical background of IRT. A Guttman scale consists of 
multiple items measuring a unidimensional construct. The items are cho-
sen in such a way that they have a hierarchical order of difficulty. Table 2.2 
gives an example of a number of items concerning walking ability. The six 
items in Table 2.2 are formulated as ‘are you able to stand?’, ‘are you able to 
walk indoors with help?’, and so on. The answers are dichotomous; yes is 
coded as 1, and no is coded as 0. The answers of seven patients (A–G) are 
shown in Table 2.2. The questions are ranked from easy at the top (an activ-
ity almost everybody is able to do), to difficult at the bottom (an activity 
almost nobody is able to do). Patient A has the highest walking ability and 
patient G the lowest.

The principle is that if a patient scores 1 for an item, this patient will score 
1 for all items that are easier, and vice versa, a patient who scores 0 for an 
item will score 0 for all items that are more difficult. Such a Guttman scale is 
called a deterministic scale. If there are no misclassifications, the sum-scores 
of a patient provide direct information about the patient’s walking ability. 
Of course, in practice, some misclassifications will occur. Such a hierarch-
ical scale also forms the basis of IRT, but in IRT more misclassifications are 
allowed. Therefore, IRT is based on probabilities.

Although IRT models are often used to measure some type of ‘ability’, 
other concepts can also be measured with an IRT model. For example, 

Table 2.2â•‡ Items of a ‘Walking ability’ scale with responses of seven patients

Patients

Walking ability A B C D E F G

Stand 1 1 1 1 1 1 0
Walking, indoors with help 1 1 1 1 1 0 0
Walking, indoors without help 1 1 1 1 0 0 0
Walking, outdoors 5 min 1 1 1 0 0 0 0
Walking, outdoors 20 min 1 1 0 0 0 0 0
Running, 5 min 1 0 0 0 0 0 0
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severity of depression may range from ‘absent’ to ‘present with a high sever-
ity’. The degree of difficulty when we are measuring ‘ability’ is easily trans-
lated into the degree of endorsement of an item (i.e. how often patients have 
a positive score for an item) when we are measuring the severity of depres-
sion. Items that are only present in patients with very severe depression will 
be endorsed by a few patients. Items that are already present in patients with 
mild depression will be endorsed by almost all patients.

IRT methods describe the association between a respondent’s underlying 
level of ability or severity (θ) and the probability of a particular response to 
the item. Every item is characterized by an item characteristic curve. The 
item characteristic curve shows the relationship between the position of the 
item on the scale of abilities (x-axis) and the probability that patients will 
have a positive score for this item (y-axis). The item characteristic curve 
usually is a non-linear monotonic function. Figure 2.5 shows an example of 
three items with a dichotomous outcome, measuring physical ability.

On the x-axis, there are three patients (A, B and C) with different levels of 
physical ability. The curves for the items ‘sitting on a chair’ (item 1), ‘walking 
without a stick’ (item 2) and ‘walking at high speed’ (item 3) should be inter-
preted as follows. Patients with the same physical ability as patient B (i.e. 
with a trait level θ of 0) have a probability of more than 90% to answer itemÂ€1 
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Figure 2.5	 Item characteristic curves for three items with equal discrimination but different 
levels of difficulty.
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(sitting on a chair) with yes. Patients such as patient B have a probability of 
about 50% to answer item 2 (walking without a stick) with yes, and will most 
likely answer item 3 (walking at high speed) with no, because the probability 
that they will answer yes is less than 5%. For patients such as patient A there 
is only a probability of about 30% that they are able to sit on a chair, and they 
are probably not able to walk without a stick or walk at high speed (prob-
ability of a positive answer for the latter items is less than 5%), while patients 
with a physical ability such as patient C are very likely to be able to sit on a 
chair and walk without a stick, and there is a probability of about 90% that 
they are able to walk at high speed. Item 3 (walking at high speed) is the 
most difficult item, and item 1 is the easiest item. The most difficult items are 
found on the right-hand side of the figure, and the easiest on the left-hand 
side. Taking a good look at what patient A and patient C can and can not 
do, it is clear that patients with little ability (i.e. severely disabled) are found 
on the left-hand side of the x-axis, and they are probably able to do most of 
the easy items. On the right-hand side, we find patients with high abilities 
(i.e. only slightly disabled). They are able to do the easy items and there is 
some probability that they can also do the difficult items. Thus, patient B is 
more disabled than patient C, and item 1 is the easiest item, while item 3 is 
the most difficult one.

With this example we have shown how item difficulty and patient ability 
are linked to each other in IRT models:Â€the higher the ability of a patient, 
the more likely it is that the patient gives a positive answer to any relevant 
item. The more difficult the item, the less likely it is that an item is answered 
positively by any relevant patient.

Figure 2.5 represents a Rasch model. The Rasch model is the simplest 
IRT model. It is a one-parameter logistic model in which all the curves have 
the same shape (see Figure 2.5). The item characteristic curves are based on 
the following formula:
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where Pi(θ) represents the proportion of patients with a certain degree of 
Â�ability or severity of the construct under study, expressed as θ, who will 
answer the item (i) positively. The parameter bi is called the difficulty or 
threshold parameter. This is the only parameter that is relevant in a Rasch 
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model. For each value of θ, P(θ) can be calculated if the value of b for that 
item is known. Suppose θ = 1, and b = 1, then the value of the numerator 
becomes e0, which equals 1, and the denominator obtains the value 1 + e0, 
which amounts to 2. Thus, P(θ) is 0.5. This calculation shows that, in more 
general terms, P(θ) will be 0.5 when b = θ. In other words, the value of bi 
determines the values of θ at which the probability of answering this item 
positively and negatively is equal. The items are ordered on the x-axis accord-
ing to their difficulty. Readers familiar with logistic regression analysis may 
recognize this type of formula and the shape of the curves.

In a two-parameter IRT model, apart from the difficulty parameter bi, 
a discrimination parameter ai appears in the formula to indicate that the 
slopes of the item characteristic curves vary. The Birnbaum model is an 
example of a two-Â�parameter model for dichotomous outcomes. The for-
mula of the Birnbaum model is:
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Now, the parameters ai and bi determine the relationship between the abil-
ity of θ and P(θ), i.e. the probability of answering these items positively. The 
parameters ai and bi thus determine the location and form of the item char-
acteristic curves. Higher values of ai result in steeper curves. A few examples 
of items in the Birnbaum model are shown in Figure 2.6.

The value of discrimination parameter a of item 2 is greater than the value 
for a of item 1. This results in a steeper curve for item 2. The difficulty param-
eter b of both items is about the same, because the items reach the P(θ) = 0.5 
at about the same value of θ.

Item 1 increases slowly, and patients with a broad range of ability are 
likely to score this item positively. For patients such as patient A with only 
little ability (e.g. θ =Â€–1), there is already a probability of 10% that they will 
score this item positively, and for patients with a trait level like patient B 
who have a high ability, there is still a probability of 10% that they will score 
this item negatively. A flat curve means that a certain score on the item gives 
less information about the position of a patient on the x-axis than a steep 
curve. In other words, items with a steep curve are better able to discrim-
inate between patients with low ability and those with high ability. Figure 
2.6 also shows that the item characteristic curves of item 1 and 2 cross. This 
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means that for patients with ability like patient A, item 2 is the most diffi-
cult, and for patients with ability like patient B, item 1 is the most difficult. 
Crossing item characteristic curves are not desirable, because they imply 
that we cannot state in general which item is the most difficult. Whether 
item 1 is more difficult than item 2 depends on the trait level. Crossing 
items hamper the interpretation of the scores.

This section provides only a short introduction to the simplest IRT mod-
els. First, there is a non-parametric variant of IRT analysis, called Mokken 
analysis. For parametric analysis, there are many different IRT models. 
For polytomous answer categories, the Graded Response Model or the 
Generalised Partial Credit Model can be used, and there are also multidi-
mensional models. For a detailed overview of all these models, we refer to 
Embretson and Reise (2000). In this book, we only describe these models 
as far as they are relevant for the assessment of the measurement properties 
of measurement instruments. As most of these models require specialized 
software, we will often describe the potentials of IRT, without providing data 
sets with which to perform these analyses.

Like CTT, IRT can only be applied to measurement instruments based 
on a reflective model. The extra assumption for IRT models is that the items 
can, to some extent, be ordered according to difficulty. If variables can be 
ordered well there is a greater chance that an IRT model will fit. IRT has 
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many advantages over CTT. Most of these will be discussed in later chapters; 
here we will introduce computer adaptive testing (CAT), one of its import-
ant applications.

The essential characteristic of CAT is that the test or questionnaire is tai-
lored to the ‘ability’ of the individual. This means that the items chosen cor-
respond to the ability of each individual respondent. For example, when it 
appears from the answers to the first questions that a patient cannot walk 
outdoors, all the questions about items that are more difficult will be omitted. 
The computer continuously calculates the ability of the patient and chooses 
relevant questions. The questions that give the most information about a 
patient are questions to which the patient has a probability of 0.5 to give a 
positive answer. Tailoring the questions to the ability of patients implies that 
the set of items may be different for each patient. Nevertheless, on the basis of 
the test results the position of the patient on the x-axis of Figures 2.5 andÂ€2.6 
can be estimated. This means that it is possible to compare the patient scores, 
despite the different items in each test. For these continuous calculations and 
the choice of relevant items, a computer is necessary. It has been found that 
CAT tests usually include fewer items than the corresponding regular tests, 
which is also a major advantage.

2.6â•‡ Summary

Medicine is a broad field, covering both somatic and psychological disor-
ders. Conceptual models help us to decide which aspects of a disease we 
are interested in. These models distinguish several levels of measurement, 
ranging from the cellular level to the functioning of a patient in his or her 
social environment. There are measurements used for diagnosis, for evalu-
ating treatment- and clinician-based outcomes and PROs, objective and 
subjective measurements, and unidimensional and multidimensional meas-
urement instruments. We explained that the distinction between observable 
and non-observable characteristics is most important, because it has con-
sequences for the measurement theory to be used. To measure unobserv-
able constructs, indirect measurement with multi-item instruments is often 
indicated. These multi-item instruments can be based on reflective models 
or formative models, depending on whether the items reflect or form the 
construct, respectively.
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Most measurements in medicine concern observable variables, which 
are assessed by direct measurements. In addition, there are some indirect 
measurements using multiple items, which are based on formative mod-
els. However, the measurement theories, CTT and IRT, are only applicable 
for measurements with multi-item instruments based on reflective models. 
These measurement theories offer some tools and advantages in the devel-
opment and evaluation of such measurement instruments, as we will see 
in Chapters 3 and 4. These are very welcome though, because unobserv-
able constructs are difficult to measure. The measurement theories do not, 
however, replace ‘proper’ thinking about the content of measurements. The 
development and evaluation of all measurement instruments, either direct 
or indirect, require specific expertise of the discipline one is working in (e.g. 
imaging techniques, microbiology, genetics, biochemistry, psychology and 
so on). In the following chapters it will also become clear that all measure-
ments in medicine, irrespective of the type and theory used, should be eval-
uated for their properties, such as validity, reliability and responsiveness.

Assignments

1.â•‡ Outcome measures in a randomized clinical trial
In a randomized clinical trial on the effectiveness of Tai Chi Chuan for the 
prevention of falls in elderly people, a large number of outcome measures 
were used (Logghe et al., 2009). The primary outcome was the number of 
falls over 12 months. Secondary outcomes were balance, fear of falling, blood 
pressure, heart rate at rest, forced expiratory volume during the first second, 
peak expiratory flow, physical activity and functional status.

Allocate these outcome measures to the different levels in the Wilson and 
Cleary conceptual model.

2.â•‡ What is the construct?
Bolton and Humphreys (2002) developed the Neck Bournemouth QuestionÂ�
naire (see Table 2.3). The authors describe the instrument as a comprehensive 
outcome measure reflecting the multidimensionality of the musculoskeletal 
Â�illness model. At the same time, the questionnaire is short and practical enough 
for repeated use in both clinic-based and research-based settings.
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Table 2.3â•‡ The Neck Bournemouth Questionnaire. Bolton and Humphreys (2002), with 
permission

The following scales have been designed to find out about your neck pain and how it is affecting 
you. Please answer ALL the scales by circling ONE number on EACH scale that best describes 
how you feel:

1. Over the past week, on average how would you rate your neck pain?
No pain Worst pain possible
0 1 2 3 4 5 6 7 8 9 10

2. Over the past week, how much has your neck pain interfered with your daily activities (housework, 
washing, dressing, lifting, reading, driving)?
No interference Unable to carry out activities
0 1 2 3 4 5 6 7 8 9 10

3. Over the past week, how much has your neck pain interfered with your ability to take part in 
recreational, social, and family activities?
No interference Unable to carry out activities
0 1 2 3 4 5 6 7 8 9 10

4. Over the past week, how anxious (tense, uptight, irritable, difficulty in concentrating/relaxing) 
have you been feeling?
Not at all anxious Extremely anxious
0 1 2 3 4 5 6 7 8 9 10

5. Over the past week, how depressed (down-in-the-dumps, sad, in low spirits, pessimistic, 
unhappy) have you been feeling?
Not at all depressed Extremely depressed
0 1 2 3 4 5 6 7 8 9 10

6. Over the past week, how have you felt your work (both inside and outside the home) has 
affected (or would affect) your neck pain?
Have made it no worse Have made it much worse
0 1 2 3 4 5 6 7 8 9 10

7. Over the past week, how much have you been able to control (reduce/help) your neck pain on 
your own?
Completely control it No control whatsoever
0 1 2 3 4 5 6 7 8 9 10

After reading the 7 items in this questionnaire:
(a) �Try to allocate the items in this questionnaire to the levels of the Wilson and 

Cleary model.
(b) �Can you decide from examining the content of this questionnaire, whether it is 

based on a reflective or a formative model?
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3.â•‡ Item response theory
In Section 2.5.2, the formula for the IRT two-parameter model was pre-
sented. We stated that when parameters a and b for an item are known, it 
is possible to calculate P(θ) (i.e. the probability of a confirmative answer) at 
different values of θ. Suppose we have two items:

item A with b = 1.0 and a = 0.7
item B with b = 0.5 and a = 1.2
(a)	 Which item is the most difficult?
(b)	 Which item discriminates best?
(c)	 Calculate P(θ) for the following values of θ:Â€–3,Â€–2,Â€–1, 0, 1, 2, 3.
(d)	 Try to draw the items in a figure with θ on the x-axis and P(θ) on the 

y-axis.
(e)	 Do the items cross?
(f)	 You don’t want the items to cross. If they do cross, which one would 

you delete?
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3

Development of a measurement  
instrument

3.1â•‡ Introduction

Technical developments and advances in medical knowledge mean that 
new measurement instruments are still appearing in all fields of medicine. 
Think about recent developments such as functional MRI and DNA micro-
arrays. Furthermore, existing instruments are continuously being refined 
and existing technologies are being applied beyond their original domains. 
The current attention to patient-oriented medicine has shifted interest from 
pathophysiological measurements to impact on functioning, perceived 
health and quality of life (QOL). Patient-reported outcomes (PROs) have 
therefore gained importance in medical research.

It is clear that the measurement instruments used in various medical dis-
ciplines differ greatly from each other. Therefore, it is evident that details 
of the development of measurement instruments must be specific to each 
discipline. However, from a methodological viewpoint, the basic steps in the 
development of all these measurement instruments are the same. Moreover, 
basic requirements with regard to measurement properties, which have to 
be considered in evaluating the adequacy of a new instrument, are simi-
lar for all measurement instruments. Chapters 3 and 4 are written from the 
viewpoint of developers of measurement instruments. When describing the 
different steps we have the development of PROs in mind. However, at vari-
ous points in this chapter we will give examples to show analogies with other 
measurement instruments in medicine.

Before deciding to develop a new measurement instrument, a system-
atic literature review of the properties of all existing instruments intended 
to measure the specific characteristic or concept is indispensable. Such a 
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literature review is important for three reasons. First, searching for exist-
ing instruments prevents the development of new ones in fields where 
many already exist. In this situation, an additional instrument would 
yield results incomparable with studies that used other instruments, and 
this would only add confusion. A second reason for such a review is to 
get ideas about what a new instrument should or should not look like. 
Instruments that are not applicable, or are of insufficient quality can still 
provide a lot of information, if only about failures that you want to avoid. 
Thirdly, it saves a lot of time and effort if you find a measurement instru-
ment that can be translated or adapted to your own specific needs. Thus, 
only if no instrument is available, should a new measurement instrument 
be developed.

Developing a measurement instrument is not something to be done 
on a rainy Sunday afternoon. If it is done properly, it may take years. It 
takes time because the process is iterative. During the development pro-
cess, we have to check regularly whether it is going well. The development 
of a measurement instrument can be divided into six steps, as shown in 
TableÂ€3.1.

In practice, these steps are intertwined, and one goes back and forth 
between these steps, as indicated in Figure 3.1, in a continuous process of 
evaluation and adaptation. The last steps in the development process consist 
of pilot-testing and field-testing. These steps are essential parts of the devel-
opment phase, because in this phase the final selection of items takes place. 
Moreover, if the measurement instrument does not perform well it has to be 
adapted, evaluated again, and so on. In Table 3.1 and Figure 3.1, the pilot test 
is placed before field-testing. However, if field-testing is intended, among 
other things, to reduce the number of items, the pilot test may be conducted 

Table 3.1â•‡ Six steps in the development of a measurement instrument

Step 1 Definition and elaboration of the construct intended to be measured
Step 2 Choice of measurement method
Step 3 Selecting and formulating items
Step 4 Scoring issues
Step 5 Pilot-testing
Step 6 Field-testing
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after field-testing (i.e. when the measurement instrument has, more or less, 
its definite form and size).

The first five steps are dealt with in this chapter, which ends with pilot-
testing as a preliminary evaluation. Field-testing will be described in 
Chapter 4.

Definition of the
construct 

Development
• items
• response options 

EvaluationAdaptation

Field-testing 

OK?

YES

Adaptation

Further evaluation of
measurement properties

Pilot-testing

NO

Evaluation

OK?

YES

NO

Figure 3.1	 Overview of the steps in the development and evaluation of a measurement 
instrument.
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3.2â•‡ Definition and elaboration of the construct to be measured

The most essential questions that must be answered are ‘what do we want to 
measure?’, in ‘which target population?’ and for ‘which purpose?’. The con-
struct should be defined in as much detail as possible. In addition, the target 
population and the purpose of measurement must be considered.

3.2.1â•‡ Construct
Definition of the construct starts with a decision concerning its level in the 
conceptual model and considerations about potential aspects of the con-
struct, as discussed in Chapter 2. Suppose we want to measure the severity 
of diabetes. Then the first question is: do we want to measure the patho-
physiological process, the symptoms that persons with diabetes perceive or 
the impact on their functioning or QOL? In other words, which level in the 
conceptual model (see Section 2.4) are we interested in? Suppose we want 
to measure the symptoms. Symptoms can be measured by checking whether 
they are present or absent, but we might also choose to measure the severity 
of each symptom separately. Suppose that one of the symptoms we are inter-
ested in is fatigue. Are we then interested only in physical fatigue, or mental 
fatigue as well? Note that by answering these questions we are specifying in 
more detail what we want to measure.

If a construct has different aspects, and we want to measure all these 
aspects, the measurement instrument should anticipate this multidimen-
sionality. Thinking about multidimensionality in this phase is primarily 
conceptual, and not yet statistical. For example, in the development of 
the Multidimensional Fatigue Inventory (MFI), which is a multi-item 
questionnaire to assess fatigue (Smets et al., 1995), the developers postu-
lated beforehand that they wanted to cover five aspects of fatigue:Â€general 
fatigue, physical fatigue, mental fatigue, reduced motivation and reduced 
activity. They developed the questionnaire in such a way that all of these 
aspects were covered. It is of utmost importance that before actually con-
structing a measurement instrument, we decide which aspects we want 
to include. This has to be done in the conceptual phase, preferably based 
on a conceptual model, rather than by finding out post hoc (e.g. by fac-
tor analysis; see Chapter 4) which aspects turn out to be covered by the 
instrument.
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3.2.2â•‡ Target population
The measurement instrument should be tailored to the target popula-
tion and so this must be defined. The following examples will illustrate its 
importance.

Age, gender and severity of disease determine to a large extent the con-
tent and type of instrument that can be used. Very young children are not 
able to answer questions about symptoms, so pain in newborns is measured 
by structured observation (Van Dijk et al., 2005). For the same reason, pain 
observation scales have also been developed for patients with severe demen-
tia (Zwakhalen et al., 2006).

Physical functioning is an important issue in many diseases, but different 
measurements may be required for different diseases. Instruments to meas-
ure physical functioning in patients with spinal cord lesions, cardiovascular 
disease, cerebrovascular disease or multiple sclerosis will all have a substan-
tially different content.

The severity of a disease is also important, because pathophysiological 
findings and symptoms will differ with severity, as will functioning and per-
ceived health status. A screening questionnaire used in general practice to 
identify persons with mild depression will differ from a questionnaire that 
aims to differentiate between the severe stages of depression.

Other characteristics of the target population may also be important, for 
example, whether or not there is much comorbidity, or other circumstances/
conditions that influence the outcome of the measurements.

There is no universal answer to the question concerning which character-
istics of the target population should be considered, but the examples given 
above indicate how a measurement instrument should be tailored to its tar-
get population.

3.2.3â•‡ Purpose of measurement
Three important objectives of measurement in medicine are diagnosis, 
evaluation of therapy and prediction of future course. Guyatt et al. (1992) 
stated that for diagnostic purposes we need discriminative instruments 
that are able to discriminate between persons at a single point in time. To 
evaluate the effects of treatment or other longitudinal changes in health sta-
tus, we need evaluative instruments able to measure change over time. A 
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third class of instruments is aimed at the prediction of outcomes. Predictive 
measurements aim to classify individuals according to their prognosis (i.e. 
the future course of their disease). Nowadays, prediction models are used 
to define a set of variables that best predict this future course. These are 
usually referred to as prediction models or prediction rules, rather than 
measurement instruments, because they usually contain a number of dif-
ferent constructs and variables. For the development of such ‘instruments’, 
we refer to a handbook about predictive modelling by Steyerberg (2009). In 
our opinion, it is better to speak of discriminative, evaluative or predictive 
applications than of instruments, because the same instrument can be used 
for different purposes. As we saw in Chapter 2, the purpose of the measure-
ment clearly has bearing on the choice of construct to be measured, and it 
also has consequences for the development of the instrument, as we will see 
in Section 3.4.3.

3.3â•‡ Choice of measurement method

The type of measurement instrument should correspond closely to the con-
struct to be measured. Some constructs form an indissoluble alliance with a 
measurement instrument (e.g. body temperature is measured with a thermoÂ�
meter and a sphygmomanometer is usually used to assess blood pressure in 
clinical practice). The options are therefore limited in these cases, but in 
other situations, many possibilities may be available. Physical functioning 
provides a nice example of the interplay between the construct to be meas-
ured and the most adequate type of measurement instrument. Suppose we 
aim to assess physical functioning in patients who have had a cerebrovas-
cular accident. We can measure what patients can do when they are invited 
to (i.e. the construct ‘capacity’), or what they think they can do (i.e. the con-
struct ‘perceived ability’), or what they actually do (i.e. the construct ‘phys-
ical activity’, which is sometimes used as a proxy for physical functioning). 
Note that capacity, perceived ability and physical activity are different con-
structs. When deciding on the type of measurement instrument, we have 
to define exactly which of these we want to measure. To obtain information 
about what patients can do, we can choose between asking them or test-
ing their physical function in performance tests, such as the ‘timed stand 
up and go’ test. To assess what patients perceive that they can do, we must 
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ask them what they can do, either by interview or questionnaire, because 
perception always requires direct information from patients. To assess what 
patients actually do, we might choose to ask them, by interview or question-
naire, or we might assess their physical activity with activity monitors, such 
as accelerometers.

When designing a PRO instrument, we next must decide whether a 
Â�multi-item measurement instrument is needed, or whether a single-item 
instrument will suffice. This evokes an interesting discussion, with arguments 
concerning reliability and the definition of the construct. The reliability issue 
is particularly important for unidimensional constructs. For example, phys-
ical fatigue can be measured by multiple items, which are all reflections of 
being physically fatigued. A multi-item instrument will be more reliable than 
a single-item instrument. The explanation will be given in Chapter 5.

The other issue concerns the definition of the construct:Â€do patients con-
sider the same aspects of fatigue as the developers had in mind, and does the 
construct ‘fatigue’ have the same meaning for all patients? In a multi-item 
measurement instrument the content of the items is often more specific, and 
multidimensional instruments include all the dimensions considered to be 
relevant for the construct. This not only makes it easier for patients to under-
stand these items, but we now know that the same construct is being meas-
ured for all patients. For example, with a single-item instrument we leave it to 
the patient to define the meaning of fatigue. One patient might, for example, 
feel physically exhausted but mentally alert, while another patient feels men-
tally tired but physically fit. So, a single question excludes the possibility of a 
detailed description of the fatigue experienced by the patients, and it ham-
pers the interpretation of the score. In particular, if more aspects are involved, 
multi-item instruments, in which multiple dimensions can be distinguished 
are more informative, because they provide subscores for each domain.

However, after having considered these arguments, what do we choose? 
The prevailing opinion is that complex constructs are best measured with 
multi-item measurement instruments, but there might be situations in 
which a single-item instrument is preferable (Sloan et al., 2002). A single-
item instrument might be attractive when a construct is not the main issue 
of interest in a study, because it is simple and short and thus reduces the bur-
den of administration. One may also choose to use a single question when 
the global opinion of the patient is of specific interest. Single items are usually 
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formulated in quite general terms. For example, ‘If you consider all aspects, 
how would you rate your fatigue?’. With regard to measurement properties, 
it is not always the case that multi-item instruments are more valid than 
when the same construct is assessed with a single item (Sloan et al., 2002). In 
a multi-item measurement instrument, it is easy and worthwhile to add one 
global question about the construct. As we will see later, this addition might 
also help in the interpretation and validation of the measurement instru-
ment. For further reading on single-item versus multi-item instruments we 
refer to Sloan et al. (2002) and Fayers and Machin (2007).

3.4â•‡ Selecting items

This chapter focuses on multi-item measurement instruments, because they 
are the most interesting from a methodological point of view. When talking 
about multi-item instruments, one immediately thinks of questionnaires, 
but performance tests also contain different tasks and the assessment of an 
electrocardiogram or MRI requires the scoring of different aspects that can 
be considered as items. For reasons of convenience, we focus on question-
naires. However, examples throughout the chapter will show that the basic 
methodological principles can be applied to other measurement instruments 
as well, such as imaging techniques or physical tests.

3.4.1â•‡ Getting input for the items of a questionnaire:Â€literature and experts

3.4.1.1â•‡ Literature
Examining similar instruments in the literature might help not only to clar-
ify the constructs we want to measure, but also to provide a set of potentially 
relevant items. We seldom have to start from scratch. This is only the case 
with new diseases. The discovery of AIDS in the 1980s posed the challenge 
of finding out which signs and symptoms were characteristic expressions of 
AIDS, and which specific pathophysiological changes in the immune sys-
tem were typical of patients with AIDS. This made it possible to develop a 
conceptual model (comparable with a Wilson and Cleary model), as new 
knowledge about AIDS became available. To develop a questionnaire to 
assess health-related quality of life (HRQL) in patients with AIDS, it was 
necessary to find out what the important symptoms were, and how these 
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affected HRQL in the physical, social and psychological domains. Among 
the important domains for these patients were the impact of fatigue, body 
image and forgiveness. Fatigue could be assessed with existing measurement 
instruments, but the constructs impact of body image and forgiveness had 
to be developed entirely from scratch (The WHOQOL HIV Group, 2003).

Nowadays there are ‘item banks’ for specific topics. An item bank con-
tains a large collection of questions about a particular construct, but it is 
more than just a collection. We call it an item bank if the item characteristic 
curves of the items that measure a specific construct have been determined 
by item response theory (IRT) analysis. Item banks form the basis for com-
puter adaptive testing, which was described in Section 2.5.2. One example 
of an item bank is the PROMIS (Patient-Reported Outcomes Measurement 
Information System), initiated by the National Institutes of Health (www.
nihpromis.org) in the USA (Cella et al., 2007). PROMIS has developed item 
banks for, among other things, the following constructs:Â€pain, fatigue, emo-
tional distress and physical functioning. The items were derived from exist-
ing questionnaires, and subsequently tested for their item characteristics. 
Item banks are an extremely rich source of items that can be used to develop 
new measurement instruments (e.g. to develop a disease-specific instru-
ment to measure physical functioning in patients with Parkinson’s disease 
or rheumatoid arthritis).

3.4.1.2â•‡ Experts
Clinicians who have treated large numbers of patients with the target condi-
tion have extensive expertise on characteristic signs, typical characteristics 
and consequences of the disease. Instruments to measure these constructs 
should therefore be developed in close cooperation with these experts. At the 
level of symptoms, functioning and perceived health, the patients themselves 
are the key experts. Therefore, patients should be involved in the develop-
ment of measurement instruments when their sensations, experiences and 
perceptions are at stake. For the development of performance tests to assess 
physical functioning, patients can also indicate which activities cause them 
the most problems. The best way to obtain information from clinicians or 
patients about relevant items is through focus groups or in-depth interviews 
(Morgan, 1998; Krueger, 2000). Developers need to have an exact picture in 
mind of the construct to be measured; otherwise, it is impossible to instruct 
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the focus groups adequately and to extract the relevant data from the enor-
mous yield of information.

3.4.1.3â•‡ An example of item selection for a patient-reported outcomes instrument
DuBeau et al. (1998) organized focus groups to obtain responses from 
patients with urge urinary incontinence (UI), about how UI affected their 
HRQL. They first invited patients to describe their UI in their own words. 
Subsequently, they asked them open-ended questions about which aspects 
of their daily lives were most affected by their UI. Patients were also asked 
open-ended questions about the influence of UI on specific areas of their 
physical health, self-care, work, household activities, social activities and 
hobbies. The discussion was driven mainly by the patients’ responses. They 
were also asked to share advice about strategies for coping with UI with 
other focus group members. Qualitative content analysis of the focus group 
transcripts was used to determine relevant items. These were compared with 
previously described UI-related QOL items obtained from the literature. 
Of the 32 items identified by the focus groups as HRQL items, more than 
half were distinct from items obtained from the literature or from clinical 
experts. Examples of these were ‘interruption of activities’ and ‘lack of self-
control’. Patient-defined items focused more on coping with embarrassment 
and interference than on avoidance of actual activity performance. This 
example illustrates the value of involving patients as key experts on what is 
important for their HRQL. However, it also shows the need to have a clear 
definition in mind of the construct ‘impact on HRQL’, because some of the 
items identified by the patients, particularly those concerning coping strat-
egies, have questionable impact on QOL. For details about focus groups, see 
the handbooks written by Morgan (1998) and Krueger (2000).

3.4.1.4â•‡� An example of item selection for a non-patient-reported outcomes 
instrument

Let us take a look at MRI findings in the diagnosis of Alzheimer’s disease 
(AD). AD is a degenerative disease characterized by cerebral atrophy with 
changes in cortical and subcortical grey matter. These changes can be visual-
ized by MRI as signal hyperintensities. In the 1990s, the involvement of white 
matter was under debate, and at that time conflicting results were attrib-
uted to a possible heterogeneous population or to a suboptimal rating scale. 
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Scheltens et al. (1993) developed a rating scale to quantify the presence and 
severity of abnormalities on MRI. In this scale (see Table 3.2), periventricu-
lar (grey matter) and white matter hyperintensities were rated separately, 
and semi-quantitative regional scores were obtained by taking into account 
the size and anatomical distribution of the high signal abnormalities.

Using this rating scale, the researchers found that there was white matter 
involvement in late onset AD, but not in patients with pre-senile onset AD. 
These groups did not differ regarding grey matter involvement on MRI.

Table 3.2â•‡ Visual rating of signal hyperintensities observed on MRI

Periventricular hyperintensities (PVH 0–6)
Capsâ•…â•…  occipital 0/1/2 0 = absent

frontal 0/1/2 1 = ≤â•›5 mm
Bandsâ•…â•‡  lateral ventricles 0/1/2 2 = >â•›5 mm and <â•›10 mm

White matter hyperintensities (WMH 0–24)
Frontal 0/1/2/3/4/5/6 0 = na
Parietal 0/1/2/3/4/5/6 1 = <â•›3 mm, n ≤ 5
Occipital 0/1/2/3/4/5/6 2 = <â•›3 mm, n > 6
Temporal 0/1/2/3/4/5/6 3 = 4–10 mm, n ≤ 5

4 = 4 mm, n > 6
5 = >â•›11 mm, n > 1
6 = confluent

Basal ganglia hyperintensities (BG 0–30)
Caudate nucleus 0/1/2/3/4/5/6
Putamen 0/1/2/3/4/5/6
Globus pallidus 0/1/2/3/4/5/6
Thalamus 0/1/2/3/4/5/6
Internal capsule 0/1/2/3/4/5/6

Infra-tentorial foci of hyperintensity (ITF 0–24)
Cerebellum 0/1/2/3/4/5/6
Mesencephalon 0/1/2/3/4/5/6
Pons 0/1/2/3/4/5/6
Medulla 0/1/2/3/4/5/6

Semi-quantitative rating of signal hyperintensities in separate regions, with the range 
ofÂ€the scale, between brackets.
n, number of lesions; na, no abnormalities.
Source:Â€Scheltens et al. (1993), with permission.
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This example shows that for these types of measurements too one has to 
find out (e.g. by comparing patient groups), which characteristics are typical 
of the disease and how these can best be quantified.

3.4.2â•‡ Formulating items:Â€first draft
All the sources mentioned above may provide input for items. However, 
some new formulations or reformulations should always occur, because the 
information obtained from experts and from the literature must be trans-
formed into adequate items. Furthermore, a new measurement instrument 
is seldom based completely on existing items, so brand new items should 
also be formulated. The formulation of adequate items is a challenging task, 
but there are a number of basic rules (Bradburn et al., 2004).

Items should be comprehensible to the total target population, independ-•	
ent of their level of education. This means that difficult words and com-
plex sentences should be avoided. It is often recommended that the items 
should be written in such simple language that anyone over 12 years of age 
can understand them (Streiner and Norman, 2008).
Terms that have multiple meanings should be avoided. For example, the •	
word ‘fair’ can mean ‘pretty good, not bad’, ‘honest’, ‘according to the rules’ 
and ‘plain’, and the word ‘just’ can mean ‘precisely’, ‘closely’ and ‘barely’. 
Respondents may interpret these questions using these words differently, 
but they will not indicate that the words are difficult.
Items should be specific. For example, in a question about ‘severity of pain’ •	
it should be specified whether the patient has to fill in the average pain or 
the worst pain. Moreover, it should be clear to which period of time the 
question refers. Should the patient rate current pain, pain during the pre-
vious 24 hours, or pain during the previous week?
Each item should contain only one question instead of two or more. The •	
words ‘and’ and ‘or’ in a question may point to a ‘two-in-one question’. 
Take for example, the item ‘When I have pain I feel terrible, and I feel 
that it’s all too much for me’. Some patients may indeed feel terrible, but 
patients who don’t have the feeling that it’s all too much for them will find 
it very hard to respond to this item.
Negative wording in questions should be avoided, because this makes •	
them difficult to answer. For example, the item ‘I have no pain when 
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walking slowly’ should be answered with ‘no’ by patients who do have 
pain when walking slowly.

These are only a few examples of requirements in formulating adequate 
items. In scientific disciplines with a long tradition in survey methodology, 
such as sociology and psychology, there are many handbooks on the for-
mulation of items for questionnaires. To read more about the essentials for 
adequate formulation of questions and answers we therefore refer to hand-
books on survey methodology (e.g. Bradburn et al., 2004).

The first draft of a questionnaire should contain as many items as pos-
sible. In this phase, creativity should dominate rigor because, as we will see 
in Chapter 4, there will be ample opportunities for evaluation, item reduc-
tion and reconsideration in subsequent phases. However, it is good to keep a 
number of issues in mind while selecting and formulating the items.

3.4.3â•‡ Things to keep in mind
Having decided that you are, indeed, going to develop a multi-item meas-
urement instrument it is time to think about the conceptual framework, i.e. 
the direction of the arrows between the potential items and the construct 
(see Section 2.4). We should realize in this phase whether we are dealing 
with a formative or a reflective model (recall Figure 2.2), because the type of 
model has important consequences for the selection of items for the multi-
item measurement instrument.

In a reflective model, the items are manifestations (indicators) of the 
construct. This implies that the items will correlate with each other, and 
also that they may replace each other (i.e. they are interchangeable). For 
that reason, it is not disastrous to miss some items that are also good indi-
cators of the construct. In the developmental phase, the challenge is to 
come up with as many items as possible. Even items that are almost the 
same are allowed. In practice a large number of items are selected, but these 
will later be reduced by special item reduction techniques, such as factor 
analysis and examination of item characteristics (as will be described in 
Chapter 4).

In a formative model, each item contributes a part of the construct, and 
together the items form the whole construct. Here the challenge is to find 
all items that contribute substantially to the construct. In formative models, 
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items do not necessarily correlate with each other, and thus are not inter-
changeable; one item cannot be replaced by another. Therefore, missing an 
important item inevitably means that the construct is not measured com-
prehensively. In a questionnaire to measure the construct ‘life stress’, all 
items that cause considerable stress should be included in the questionnaire, 
even if some are endorsed by only a small proportion of the population. 
For example, the death of a close family member is very stressful, but only 
a small proportion of the population will answer this item positively. For 
formative models, the items together should cover the whole construct, and 
important items must not be missed. This is an important issue that must be 
kept in mind during item generation. However, the assessment of import-
ance and the elimination of less important items should take place during 
field-testing (see Chapter 4). Note that factor analysis does not play a role in 
item reduction in formative models.

Can the researcher choose freely between reflective and formative mod-
els? In the developmental stage, the answer is ‘to some extent’. However, some 
constructs lend themselves better to be measured with reflective models and 
others with formative models. Socio-economic status (SES) is usually meas-
ured with a formative model, based on the items ‘level of education’, ‘income’ 
and ‘profession’, but one can try to find reflective items for SES. Examples of 
such questions are:Â€‘How high up are you on the social ladder?’ and ‘How do 
you rate your socio-economic status?’.

In Chapter 2, Figure 2.2(b) showed that life stress could be measured 
based on a formative model. The items in that measurement instrument 
comprised events that all cause stress. These are presented on the left-hand 
side of Figure 3.2. However, one can also think of a measurement instrument 
consisting of items that are reflections of stress. We know that stress results 
in a number of symptoms, such as ‘troubling thoughts about the future’ and 
‘sleep disturbances’, some of which are presented on the right-hand side of 
Figure 3.2. So, in the case of the measurement of stress a researcher can 
choose between a formative and a reflective model.

Another issue to keep in mind is the difficulty of the items. Note that this 
not only holds when we are going to use IRT analysis (i.e. considering the 
hierarchy of items). In classical test theory (CTT) the total range of easy and 
difficult items relevant for our target population should also be covered. For 
instance, in our example concerning the severity of depression, if the target 
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population consists of patients with all levels of depression, we have to think 
about items characteristic of mild depression, as well as those indicative of 
moderate and severe depression. Therefore, the difficulty of items in relation 
to the target population is another thing that must be kept in mind while 
selecting items. We will discuss this in more detail in Chapter 4.

According to Guyatt et al. (1992), measurement instruments with a dis-
criminative purpose require items that have a discriminating function, 
and these items do not necessarily have the ability to measure changes in 
the health status of an individual patient. When composing an evaluative 
instrument, the answers to the items should change when the patient’s 
health status improves. However, this distinction is less pronounced than 
Guyatt and colleagues have suggested. Let us consider a questionnaire to 
assess the construct ‘severity of depression’. Assuming a reflective model, 
the questionnaire consists of items that are all reflections of depression. 
If the severity of the depression changes, the responses to all items will 
also change. This is an implicit assumption of a reflective model. The ques-
tionnaire therefore meets the requirements for an evaluative measurement 
instrument. Nevertheless, it will also be able to discriminate between vari-
ous stages of depression. It can be assumed that patients with severe depres-
sion have already gone through states of mild and moderate depression. 
Therefore, if the instrument is able to distinguish between these stages lon-
gitudinally (within an individual), it will also be able to distinguish between 
them cross-sectionally (between individuals). Given that we are measur-
ing the same construct, there will be very little difference between the 

Troubling thoughts
about the future

Easily irritated

Sleep disturbances

Job loss

Death in the
family 

Divorce

Stress

Increased heart rate

Figure 3.2	 Conceptual framework for the measurement of stress. The left-hand side depicts a 
formative model, the right-hand side a reflective model.
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requirements for items for discriminative purposes and those for evaluative 
purposes.

This does not mean that we can forget the purpose of the measurement. 
It does still have some influence on the composition of the measurement 
instrument, i.e. in the choice of items. Let us return to the example concern-
ing the construct ‘severity of depression’ that we want to measure. Suppose 
that we want to identify cases of mild depression in general practice by 
means of a screening questionnaire. This is a discriminative purpose, in 
which case we have to be sure to include a large number of items in the 
range of the borderline between no depression and mild depression. The 
result of the measurements are dichotomized best as either no depression 
or depression. However, if we want to measure the degree of depression in 
patients visiting general practice, we want to have items covering the whole 
range of the depression scale. The ultimate result of the measurement may 
be a variable with several categories, ranging from no depression to very 
severe depression, or may even be expressed as a distribution of continuous 
scores.

Furthermore, in the development of a measurement instrument, appli-
cation in research or in clinical practice must be kept in mind. In clin-
ical practice, the instruments are usually shorter, due to time constraints. 
Moreover, fewer distinctions may be made (e.g. in grade of severity), 
because only classifications that have consequences for clinical manage-
ment are relevant.

Last but not least, while writing the items, one should keep the response 
options in mind. The statements or questions contained in the items must 
correspond exactly with the response options. Table 3.3 provides an over-
view of things to keep in mind during the item selection phase.

Table 3.3â•‡ Things to keep in mind in the selection and formulation of items

Construct
Target population
Purpose of measurement
Reflective or formative model
Difficulty of the items
Application in research or clinical practice
Correspondence with response options
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3.5â•‡ Scores for items

3.5.1â•‡ Scoring options
Every measurement leads to a result, either a classification or a quantifica-
tion of a response. The response to a single item can be expressed at nominal 
level, at ordinal level and at interval or ratio level.

The nominal level consists of a number of classes that lack an order. Often 
the number of classes is only two:Â€the characteristic white mass on a mam-
mogram, for example, is present or absent. The item is then called dichotoÂ�
mous. Sometimes, however, there are more categories. An example is cause 
of death, which has a large number of classes, with no logical order. The sys-
tem of the International Classification of Functioning (ICF) (WHO, 2001), 
which contains classes such as sleeping, function, walking and body struc-
ture, is also a nominal level.

The ordinal level also consists of classes, but now an order is observable. 
Severity of disease can be measured on an ordinal scale. One can speak of 
mild, moderate or severe diabetes, and the colour of the big toe in patients 
with diabetes can be pink, red, purple or black. If numbers are assigned to 
the classes of foot ulcers in patients with diabetes, we know that 2 (red) 
is worse than 1 (pink), and 4 (black) is worse than 3 (purple). However, 
the ‘distance’ between 1 and 2 and between 3 and 4 in terms of degree of 
severity is unknown, and is not necessarily the same. Figure 3.3 shows an 
example of an ordinal scale designed by the COOP-WONCA Dartmouth 
project team (Nelson et al., 1987). Both the words and the drawings can 
be used to express the degree to which the patient has been bothered by 
emotional problems. These drawings are sometimes used for children, 
older people or patients who have difficulty in reading or understanding 
the words.

We have to mention Likert items when dealing with measurements at 
an ordinal level. Originally, the Likert items consisted of statements about 
opinions, feelings or attitudes, for which there is no right or wrong or no 
favourable answer. The response options are bipolar, and consist of three, 
five or seven classes with, conventionally, strongly disagree on the left-hand 
side and strongly agree on the right-hand side, and the middle category 
being a neutral score. If we want to force respondents to choose positive or 
negative answers, four or six classes can be used. All classes may be given a 
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verbal description, but this is not always the case. Nowadays, items scored 
at ordinal level are often called Likert items even when they do not refer to 
opinions or attitudes, such as ‘I am able to get out of bed without help’, with 
the following response options:Â€ totally disagree, somewhat disagree, don’t 
disagree, don’t agree, somewhat agree, strongly agree. Even items with other 
response categories are called Likert items.

At the interval level, the scores of measurements are expressed in numbers 
to quantify the measurement results. Examples are body temperature, plasma 
glucose level and blood pressure. In these cases, the distances between the 
scores are known, and we can start adding and subtracting. For example, the 

Not at all

FEELINGS

1

2

3

4

5

Slightly

Moderately

Quite a bit

Extremely

During the past 4 weeks ...
 How much have you been bothered by
 emotional problems such as feeling anxious,
 depressed, irritable or downhearted and blue?

Figure 3.3	 Example of different types of scales to grade emotional feelings. Nelson et al. 
(1987), with permission.
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distances between systolic blood pressures of 140 and 150 mmHg and between 
150 and 160 mmHg are equal, although the consequences may differ.

The ratio level is similar to the interval level, except that it has an absolute 
(true) zero point. Examples are tumour size and age. In addition to adding 
and subtracting scores, we can also calculate the ratio of two scores.

Both the nominal and the ordinal levels use classifications and are known 
as categorical variables. Interval and ratio levels enable quantification and 
are known as continuous variables. The term ‘continuous’ suggests that the 
variable can take all values, but this is not always the case. For example, the 
pulse rate per minute has counts, and is expressed as whole numbers. In 
other examples the scale may not allow finer distinctionsÂ€– although they 
existÂ€– and the results of a measurement are expressed in whole numbers 
(e.g. body height is usually expressed in centimetres). Variables that cannot 
take all values are called discrete variables instead of continuous variables. 
The order of nominal, ordinal, interval and ratio level allows progressively 
more sophisticated quantitative procedures to be performed on the meas-
urements. In this book, we focus only on the consequences for assessment 
of the measurement properties of instruments.

3.5.2â•‡ Which option to choose?
To what extent can researchers freely choose the level of measurement of 
the responses? If a measurement is at interval scale, it is always possible 
to choose a lower level of measurement. For example, the glucose level of 
patients with diabetes is expressed in mmol/l (interval level), but one might 
choose to make a response scale at ordinal level with categories of normal, 
moderately elevated, substantially elevated and extremely elevated. A nom-
inal scale in this example would consist of two categories:Â€not elevated and 
elevated. However, by choosing a lower level of measurement, information is 
lost:Â€knowing the exact plasma glucose level is more informative than know-
ing only whether or not it is elevated.

Nominal variables, such as blood group or gender, cannot be measured on 
an ordinal scale or an interval scale. However, intensity of pain, for example, 
is sometimes measured at ordinal level and sometimes at interval level. At 
ordinal level, for example, the following categories are used:Â€no pain, mild 
pain, moderate pain and severe pain. To measure pain at interval level, we 
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ask patients to score the intensity of their pain on a visual analogue scale 
(VAS). A VAS is a horizontal line with a length of 100 millimetres (mm), 
with an anchor point at the left indicating ‘no pain’, and an anchor point on 
the right indicating ‘unbearable pain’, and no demarcations or verbal expres-
sions in between (see Figure 3.4). The patient is asked to indicate the inten-
sity of his or her pain on this 100-mm line. The intensity of the pain is now 
expressed in mm, and it has become a continuous variable.

The question is, however, do we obtain more information by choosing 
an interval scale rather than an ordinal scale? That depends on whether 
patients are able to grade their amount of pain in such detail. Patients can-
not reliably discriminate between 47 mm and 48 mm of pain on a 0–100 
mm VAS, and it is questionable whether they can distinguish, for example, 
55 mm from 47 mm.

The same issue is of concern when setting the number of categories in an 
ordinal scale. For measurements in medicine, the answer is not only based 
on how many degrees of the characteristic can be distinguished by clini-
cians or patients, but it is primarily determined by how many categories 
are relevant. The number may differ for research and clinical practice. If the 
doctor has only two options to choose from (e.g. treatment or no treatment) 
then two categories might suffice. So, it depends on the number of categor-
ies that are clinically relevant for the doctor. In research, we often want to 
have many options, in order to obtain more detailed distinctions or a more 
responsive measure. Miller (1956) found that seven categories are about 
the maximum number of distinctions that people are able to make from a 
psycho-Â�physiological perspective. Whether or not all the categories used are 
informative can be examined by IRT analysis (Chapter 4).

3.6â•‡ Scores for scales and indexes

Now that we have seen how the individual items in a multi-item measure-
ment instrument are scored, we will discuss how sum-scores or overall scores 
can be obtained. We will first discuss how this works for unidimensional 

Unbearable painNo pain

Figure 3.4	 A visual analogue scale (VAS) to measure pain intensity.
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multi-item instruments based on reflective models, which we call scales, 
and then for multi-item measurements that contain different dimensions, 
i.e. based on formative models, which we call indexes. Be aware that scales 
and indexes are defined differently by different authors (Sloan et al., 2002). 
In this book, we follow Fayers and Machin (2007), by defining scales, such 
as the somatization scale of the four-dimensional symptom questionnaire 
(4DSQ; Terluin et al. 2006). We encountered these in Chapter 2, as rep-
resenting multiple items measuring a single construct, and indexes such 
as the Apgar score summarizing items representing multiple aspects or 
dimensions.

3.6.1â•‡ Summarizing scores in reflective models
How do we obtain scale scores? Usually the item scores are just summed up. 
An example is the Roland–Morris Disability Questionnaire (RDQ; Roland 
and Morris, 1983), which consists of 24 items asking patients whether or not 
they have difficulty in performing 24 activities because of their low back pain. 
Each ‘yes’ scores one point, so the total score ranges from 0 to 24. If items 
are scored on an ordinal level, summation also takes place. For example, the 
somatization subscale of the 4DSQ had 16 items, scored on a three-point 
scale:Â€0 for symptom ‘not present’, 1 for symptom ‘sometimes present’ and 2 
for symptom ‘regularly present’, ‘often’, ‘very often or constantly’. This scale 
with 16 items (each scored 0, 1 or 2) can have values in the range of 0–32. 
Instead of the sum-scores of scales, the average score might also be taken. 
Average scores may be easier to understand because their values are in the 
same range as the item scores themselves, i.e. if item scores range from 0 to 
2 points the average score is also within this range.

The Guttman scale was introduced in Chapter 2 as a basis for IRT scales. 
The items concerning walking ability had a nice hierarchical order of dif-
ficulty. Just adding the item scores (1 or 0) is an adequate way in which to 
obtain a sum-score for a person’s walking ability. In addition, this sum-score 
conveys a lot of information about the patient’s walking ability. For example, 
in the case of a perfect Guttman scale (i.e. with no misclassifications), a 
patient with a sum-score of 2 (like person E in Table 2.2) has no problems 
with standing and is able to walk indoors with help, but is not able to walk 
indoors without help and outdoors.
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Summing up with or without using weights
In IRT models, in order to calculate an overall score the item scores are also 
often summed up. For Rasch models (i.e. IRT models in which all items 
have the same discrimination parameter a; see Chapter 2), the sum of the 
items (∑Yi) is taken. In a two-parameter IRT model, in which the items 
have different discrimination parameters, the items are weighted with the 
value of a, the discrimination parameter:Â€ sum-score = ∑aiYi (Embretson 
and Reise, 2000).

We have just seen that some IRT models with different discrimination 
parameters require weighing with the discrimination parameter a as a 
weight. In reflective models using CTT, the scores of the items in multi-
item instruments are sometimes weighted as well. For that purpose, weights 
obtained from factor analysis can be used (Hawthorne et al., 2007). However, 
a weighted score is not necessarily better. First, it should be recognized that 
a weighted score will show a high correlation with an unweighted score, 
because (under CTT) all items are correlated, and secondly, the weights 
apply to the populations in which the weights were assessed, and not neces-
sarily to other populations. Therefore, the item scores are usually summed 
up without weights.

3.6.2â•‡ Summarizing scores in formative models
As shown in Table 3.4, multidimensional constructs can be measured by 
indexes, in which each item represents a different dimension. These are based 
on formative models. The term index is used for an instrument consisting of 
multiple dimensions, which are summarized in one score. The term profile is 
used for a multidimensional construct that consists of different dimensions 
for which a score is presented for each dimension. Each dimension may con-
sist of either a single item, or a number of items representing a unidimen-
sional scale. In the latter case, the profile is a combination of a reflective and 
a formative model. Some examples will illustrate the distinction between 
indexes and profiles.

There are various comorbidity indexes (De Groot et al., 2003), and most 
ofÂ€these use a weighing system to summarize the number of comorbid dis-
eases and their severity or impact. Whelan et al. (2004) assessed the sever-
ity of diarrhoea by scoring using a stool chart. The stool chart consisted 
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ofÂ€Â� aÂ€Â� visual presentation of three characteristics of the faecal output:Â€ the 
amount/weight (<100 g, 100–200 g, >200 g), the consistency (hard and 
formed, soft and formed, loose and unformed, liquid) and the frequency. 
They developed a scoring system to combine these three characteristics into 
a daily faecal score, which makes it an index.

The Multi-dimensional Fatigue Inventory (MFI; Smets et al., 1995) con-
sists of a number of scales based on a reflective model. The scores on these 
unidimensional scales are presented separately, i.e. the different dimensions 
are not summed. The results of the MFI are therefore expressed as a pro-
file. For cancer staging, the TNM system is used, which expresses whether 
or not there is a tumour (T), whether or not there are positive nodules (N) 
and whether or not there are metastases (M). These three characteristics are 
always presented separately and never summed or summarized in another 
way. Therefore, we call it a profile.

Before we elaborate on how sum-scores for instruments containing dif-
ferent dimensions should be calculated, we first discuss whether they should 
be combined at all. There is no simple yes or no answer to this question. 
From a theoretical point of view, it is incorrect to combine them, because 
we know that we are comparing apples with oranges when summing up 
items from multidimensional constructs. Thus, summing loses informa-
tion about the underlying separate dimensions. For theoretical reasons, 
presenting one score per domain (i.e. a profile) is preferable (Feinstein, 
1987; Fayers and Machin, 2007). However, for practical reasons one over-
all score is sometimes used. One sum-score is much easier to work with, 

Table 3.4â•‡ Overview of terms for multi-item measurement instruments

Terms for multi-
item measurement 
instruments

Unidimensional or 
multidimensional Scores

Scale Unidimensional:Â€set of items 
measuring one dimension

Sum-scores based on a 
reflective model

Index Multidimensional:Â€set of items 
measuring different dimensions

Sum-score based on a 
formative model or 
observable constructs

Profile Multidimensional A score per dimension
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and in the end we usually want to have one answer as to whether or not, 
for example, overall fatigue has improved. However, if we want to inter-
vene in a patient with fatigue in clinical practice, we have to know which 
domain is most affected. This is in analogy with school marks. Of course, 
we want to assess the performance of pupils with regard to their languages, 
mathematics, geography and so on, but in the end we have to determine 
whether the pupils will pass or fail their exams. In that case, a summariza-
tion of the scores is needed. This may be a sum-score or an average score, 
but the example of exam scoring also suggests other algorithms that may be 
applied (e.g. when failing an exam it is, in particular, the lowest scores that 
are important).

3.6.3â•‡ Weighted scores
In indexes, in which every item represents a different dimension, each item 
is often given the same weight. There are various diagnostic criteria, based 
on a number of signs and/or symptoms, which are indicative of a certain 
disease. For example, to diagnose complex regional pain syndrome type 1 
in one of the extremities (e.g. the right foot), five criteria are postulated:Â€the 
presence of unexplained diffuse pain; colour changes in the right foot com-
pared with the left foot; swelling; differences in body temperature in the right 
foot compared with the left foot; and a limited active range of motion in the 
right foot. If four of these five criteria are satisfied, the patient is considered 
to have complex regional pain syndrome type 1 (Veldman et al., 1993). In 
this case, the criteria have equal weights.

There are also examples of indexes in which items receive different weights. 
The visual rating scale of hyperintensities observed on MRI for the diagno-
sis of AD (see Table 3.2) is an example of the use of different weights, with 
a maximum score of 6 for periventrical hyperintensities and a maximum 
score of 30 for basal ganglia hyperintensities.

3.6.3.1â•‡ How and by who are weights assigned
When it is decided that the different dimensions should be given different 
weights, the important questions are ‘who chooses the weighting scheme?’ 
and ‘how is this accomplished?’. Factor analysis is not an option here, 
because in formative models correlation between the items or dimensions 
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is not expected. The weights may be decided upon by the researchers or 
the patients. Empirical evidence may guide the weighting, but the weights 
are often chosen by subjective judgements. Note that by just summing 
up or averaging the scores, equal weights are implicitly assigned to each 
domain.

Judgemental weights
For PRO instruments, it is sensible to let patients weigh the importance of 
the various dimensions. For this purpose, weights are sometimes decided 
upon in a consensus procedure involving patients. The resulting weights 
are then considered to be applicable to the ‘average’ patient. However, it is 
known that patients can differ considerably with regard to what they con-
sider as important, and this may even change in different stages of their dis-
ease, as was observed in terminally ill cancer patients (Westerman et al., 
2007). Therefore, some measurement instruments that have been developed 
use an individual weighting (Wright, 2000).

For example, the SEIQOL-DW (Schedule for Evaluation of Individual 
Quality Of Life with Direct Weighting (Browne et al., 1997) is a QOL meas-
urement instrument, in which the individual patient determines the import-
ance of the various domains. For this purpose the total HRQL is represented 
by a circle. The patient mentions the five areas of life that are most import-
ant to him/her. For the direct weighting the patient, with help from the 
researcher, divides the circle into five pie segments according to the relative 
importance of these five areas of life, with percentages that add up to 100%. 
Then the patient rates the quality of these five areas on a vertical 0–100 VAS. 
The ultimate SEIQOL-DW score is calculated as the sum of the score for 
each of the five areas multiplied by the percentage of relative importance of 
that area.

Empirical weights
There are different methods that can be used to assign weights to the dimen-
sions, based on empirical evidence. As can be deduced from Figure 2.4, in a 
formative model the relationship between the construct η and the items Xi 
can be represented as follows:

η = β1X1 + β2X2 + β3X3 + β4X4 + … + βkXk + δ.
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This formula resembles a regression equation. In regression analysis, we 
have data about k independent variables Xi, and a dependent variable Y, 
which are all directly measurable. However, in the formula above we face 
a problem:Â€we have an unobservable construct η instead of Y. So, although 
we know that η is a composition of the Xs, we cannot calculate how it is 
determined by the Xs because we cannot measure η. We need an external 
criterion to obtain an independent assessment of η. Sometimes only one 
item is used to ask about the global rating of the construct. That is why we 
remarked earlier in this chapter (Section 3.3) that it is wise to include such 
a global item.

A more satisfying approach is to use more than one item to estimate 
η. We have seen that latent constructs can best be estimated by several 
reflective items. This observation leads to a model with multiple indicator 
Â�(reflective) items and multiple causal (formative) items. Such a model is 
called a MIMIC model, i.e. a model with multiple indicators and multiple 
causes (see Figure 3.5). The upper part of this model (i.e. the relationship 
between Ys and η) is a reflective model, and the lower part (i.e. the rela-
tionship between Xs and η) is a formative model. Now the construct η is 

ε1 ε2

Y1 Y2

X2 X3X1

η
δ

Figure 3.5	 MIMIC model.
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estimated by both Y1 and Y2 and by X1, X2 and X3. Here we enter the field of 
structural equation modelling.

For example, we know that SES, represented by the construct η in Figure 
3.5, is composed of education level, income and profession, represented by 
the Xs. However, we cannot perform a regression analysis until we know 
the values of SES (construct η). We might therefore formulate items that 
try to measure SES via a reflective model, represented by the items Y1 and 
Y2. Examples of such questions are:Â€ ‘How high up are you on the social 
ladder?’ and ‘How do you rate your socio-economic status?’. Structural 
equation modelling is used to estimate the βs corresponding to the Xs. For 
a gentle introduction to structural equation modelling we refer to Streiner 
(2006).

This MIMIC model is not yet widely used within medicine, but it may 
be a useful strategy to calculate sum-scores or to obtain more informa-
tion about the relative importance of the various determinants (Xs). At the 
same time, some comments have to be made. First, we are assuming that 
we have all the important components (Xs) in our analyses. Secondly, we 
have to realize that there is circular reasoning in this model:Â€we are using 
suboptimal items (Ys) to find a way to measure the construct η with the 
use of Xs. And thirdly, which measurement of construct η do we prefer:Â€the 
formative part in which we define the construct, based on its components 
now that we know the relative contribution, or the reflective part, which 
is based on questions about our total construct (Atkinson and Lennox, 
2006)?

3.6.3.2â•‡ Preference weighting or utility analysis
Patient preferences and the relative importance of different aspects of a 
construct are often assessed by utility analysis, a method that is taken from 
economics. In these analysis choices have to be made between different 
resources, based on the individual valuation of these goods. Typical methods 
used to measure utilities are standard gamble and time trade-off techniques 
(Drummond et al., 2005). Another method to elicit patient preferences is 
called conjoint analysis (Ryan and Farrar, 2000). These methods can be used 
to analyse the relative importance of the dimensions in a multidimensional 
instrument.
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3.6.3.3â•‡ Alternative methods
In some situations, neither simple summations nor weighted sums appear 
to be justified, and in some areas it is questionable whether domains can 
be summed at all. In the case of HRQL, there are several variables that may 
each individually lead to a low QOL, such as severe pain or severe depres-
sion. In these situations the construct (e.g. QOL) is mainly determined by 
the domain with the lowest score, and other domains will be given less 
weight. Another example is the burden of pain. If patients who have pain 
in more than one location in their body have to rate the overall burden of 
their pain, the most serious location will overrule all the others, and the 
others will add only little or nothing to the burden. However, as soon as 
pain in the most serious location disappears, the pain in other locations 
gains more weight. In such examples the overall score will be equal to the 
maximum (or minimum) value of the Xs, expressed as max (or min) (X1, 
X2, X3, …, Xk) ≡ X. Note that such a strategy to calculate scores also applies 
to school exams.

Table 3.5 presents an overview of the methods of weighing informative 
models.

3.7â•‡ Pilot-testing

The development of a measurement instrument progresses through a 
number of test phases, as shown in Figure 3.1 depicting the iterative pro-
cess. The first draft of the measurement instrument is tested in a small 
sample of patients (e.g. 15–30 persons), after which adaptations will 

Table 3.5â•‡ Overview of strategies for the weighting of domains in formative models

Method of weighting Who determines the weights?

Judgemental Patient groups
Individual patients
Researchers

Empirical Structural equation modelling
 Preference analysis or utility analysis
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follow. This pilot-testing is intended to test the comprehensibility, rele-
vance, and acceptability and feasibility of the measurement instrument. 
Pilot-testing is necessary not only for questionnaires, but also for other 
newly developed measurement instruments. We will first describe the aim 
of pilot-testing the PRO instruments, followed by pilot-testing the non-
PRO instruments.

3.7.1â•‡ Pilot-testing of patient-reported outcomes instruments
For PRO instruments, comprehensibility is of major importance. Asking stu-
dents or colleagues to fill in the questionnaire, or asking persons who do not 
suffer from the disease can be a very useful first step. It is a fast and cheap 
method that can immediately reveal a number of problems (Collins, 2003). 
However, it is not sufficient. After adaptations, the target population must 
be involved in the pilot-testing, because only the target population can judge 
comprehensibility, relevance and completeness. With regard to comprehensi-
bility, for example, only patients with a fluctuating intensity of pain experience 
difficulties in answering the question about ‘severity of pain during the past 
24 hours’, and will ask for further specification about whether average pain or 
maximum pain is meant. With regard to relevance, for example, the question 
‘relaxation therapy reduces my pain’ contains the implicit assumption that 
everybody in the target population has had experience with relaxation ther-
apy. If ‘not applicable’ is not one of the response options for this item, patients 
who have never received relaxation therapy will answer no, or give a neutral 
answer, or leave this item open, resulting in a missing value. To test for com-
pleteness, it is wise to ask at the end of the list of questions whether patients 
feel that items they consider relevant are missing from the list, and because 
participants in the pilot-testing are from the relevant study population, this is 
an easy way to ensure that no important items have been left out.

In the pilot-testing, after participants have completed the questionnaire, 
they should be asked about their experience. This should go deeper than 
simply asking whether the questions were comprehensible or whether they 
had any problems with the response categories. Two well-known methods 
are ‘think aloud’ and ‘probing’. Using the ‘think aloud’ method, patients are 
invited to say exactly what they are thinking when filling in the question-
naire. How do they interpret the various terms? How do they choose their 
answers? What context do they use to answer the questions? Do they think 
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about their most serious episodes, or do they take some kind of average? 
In the ‘probing’ method, patients are questioned in detail by a researcher 
about the perceived content and interpretation of the items. The interviewer 
can ask how they interpreted specific words, and why they chose a specific 
response category. It might be interesting to ask, for example, which refer-
ence the patients used to rate their QOL. Did they compare themselves to 
other people of the same age or to the situation before they became ill, or do 
they have some other point of reference? Patients may differ in this respect 
(Fayers et al., 2007). The Three Step Test Interview (Van der Veer et al., 
2003) combines the think aloud and the probing methods, and is therefore 
a very powerful tool with which to establish whether the patients under-
stand the questions or tasks, whether they do so in a consistent way, and 
in the way the researcher intended. We used this method to evaluate the 
TAMPA Scale of Kinesiophobia, an existing questionnaire that was consid-
ered to be well validated. It emerged that patients had difficulties with some 
of the wording, and that some items contained implicit assumptions (Pool 
et al., 2009).

Acceptability refers to the question of whether or not patients are willing 
to do something, and feasibility refers to whether or not they are able to do 
it. We might question whether patients are willing to keep a food diary in 
which they register the amounts of all the foods they eat during a period 
of 3 days, or whether they are willing to fill in questionnaires when this 
takes more than half an hour, i.e. acceptability. Whether or not patients are 
able to fill in the questionnaire themselves or whether an interview would 
be more adequate are examples of feasibility. Feasibility will depend on the 
difficulty of the questionnaire and the age and capacities of the patients. 
In some situations ‘proxy’ respondents may be needed, for example, fam-
ily members or care-givers who answer if patients themselves are not able 
to do so. Furthermore, the length of the questionnaire is important. This 
can be assessed in the pilot-testing:Â€how long does it take the respondents 
to complete the questionnaire? When a questionnaire is too long patients 
may lose concentration or motivation before the end of the questionnaire. 
Note that in research, the individual measurement instruments may be quite 
short, but a battery of 10 fairly short questionnaires may add up to a 60-min 
Â�questionnaire. What is acceptable and feasible depends heavily on the age, 
fitness and capabilities of the patients.
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3.7.2â•‡ Pilot-testing of non-patient-reported outcomes instruments
In this chapter, we have focused on questionnaires, but several issues are 
also relevant for other newly developed measurement instruments. For 
many tests in which the patients are actively involved, such as mental tests or 
physical capacity or performance tests, it is necessary to check whether the 
instructions to patients are unambiguous and well understood by patients. 
This concerns comprehensibility.

The measurement instrument has to be acceptable to patients. For non-
PRO instruments, important questions are, for example, whether patients 
are willing to carry an accelerometer for a number of days, or whether they 
want to participate in a performance test when their knees are still rather 
painful. With imaging techniques, other considerations play a role, i.e. radi-
ation load or other invasive aspects of some tests.

The terms acceptability and feasibility apply to both patients undergo-
ing the tests and researchers performing the tests. For example, from the 
researcher’s point of view, a test that takes 30 min may not be feasible, 
whereas it may be acceptable for the patients.

It goes without saying that if the measurement instrument undergoes 
substantial adaptations after the pilot-testing, the revised instrument should 
be tested again in a new sample of the target population.

3.8â•‡ Summary

Researchers have a tendency to develop new measurement instruments. 
However, so many measurement instruments are already available in all 
fields that investigators should justify their reasons for developing any new 
instrument. Nevertheless, although in general we discourage the develop-
ment of new instruments, we have still explained ‘how to do it’, because 
we know that people will do it anyway. We also acknowledge that in some 
situations it is necessary, because no suitable measurement instrument is 
available.

There are a number of important points that we want to repeat at the 
end of this chapter. First of all, a detailed definition of the construct to 
be measured is indispensable. Secondly, expertise about the content of a 
field is essential. This holds for all measurements. Methodologically sound 
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strategies cannot replace good content. Thirdly, during the construction 
of a measurement instrument (e.g. item selection) the future application 
of the measurement instrument (target population, purpose, research or 
practice) should be kept in mind. Fourthly, development is an iterative 
process, i.e. a continuous process of evaluation and adaptation. The pilot-
testing should be rigorous and adequate time should be reserved for adap-
tations and retesting.

We have discussed some consequences of the type of measurement model 
in the development of measurement instruments:Â€when dealing with reflect-
ive models, items may replace each other, while using a formative model all 
relevant items should be included. Moreover, in unidimensional scales the 
scores for the items can easily be added together or averaged. In constructs 
with several dimensions, or indexes, it is more difficult to calculate an over-
all score, and profile scores are often preferred over total scores. As a conse-
quence, unidimensional or narrow constructs are much easier to interpret 
than complex multidimensional constructs, which is why the former are 
preferred. Methods to deal with formative models are under development, 
for example in the field of marketing research, but applications in clinical 
and health research are still scarce.

The first draft of a measurement instrument should undergo pilot-testing, 
to establish whether patients can understand the questions or tasks, whether 
they do so in a consistent way, and in the way the researcher intended. In 
addition, a measurement instrument should be tested for its acceptability 
and feasibility. If it has been adapted substantially, it is wise to repeat the 
pilot-testing in a new sample of the target population.

Assignments

1.â•‡ Definition of a construct
Suppose you want to increase the physical activity of sedentary office work-
ers. How would you define the construct physical activity in this context? 
Take into account the following considerations:

(a)	 Why do you want to increase their physical activity?
(b)	 What kind of physical activity do you want to measure?
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(c)	 Which different aspects of physical activity do you want to measure?
(d)	 How does the purpose of the measurement affect what you want to 

measure?

2.â•‡ Choice between objective and subjective measurements

(a)	 Suppose you want to measure walking ability in elderly patients, 6 
months after a hip replacement because of osteoarthritis. Can you give 
an example of a subjective and objective measurement instrument to 
assess walking ability?

(b)	 Which one would you prefer?
(c)	 Give an example of a research question for which an objective meas-

urement would be the most appropriate, and an example of a research 
question that would require a subjective measurement.

3.â•‡ Choice between a reflective and a formative model
Juniper et al. (1997) developed an Asthma Quality of Life Questionnaire 
(AQLQ). They based this on 152 items that are, as they say in the abstract of 
their paper, ‘potentially troublesome to patients with asthma’. In addition to 
outcome measures, which focused on symptoms, their aim was to develop 
a questionnaire to assess the impact of the symptoms and other aspects of 
the disease on the patient’s life. Examples of such items were:Â€‘How often 
during the past 2 weeks did you feel afraid of getting out of breath?’, ‘In 
general, how often during the last 2 weeks have you felt concerned about 
having asthma?’, ‘How often during the past 2 weeks has your asthma inter-
fered with getting a good night’s sleep?’, and ‘How often during the past 2 
weeks did you feel concerned about the need to take medication for your 
asthma?’.

From this set of 152 items, they wanted to select certain items for inclu-
sion in the AQLQ. They decided to compare two strategies to achieve this 
goal:Â€one based on a reflective model and the other based on a formative 
model.

(a)	 What do you think of their plan to compare these two strategies for item 
selection?

(b)	 Which model would you prefer in this situation?
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4.â•‡ Cross-cultural adaptation of an item
In the Netherlands, almost everybody has a bicycle, which is used to travel 
short distances (e.g. going to school, to work or for trips within town). If 
persons are no longer able to use their bicycle, because of some kind of phys-
ical disability, this might limit their social participation.

A typical item in a Dutch questionnaire is:Â€‘I am able to ride my bike’, with 
response options: ‘strongly disagree’ (0) to ‘strongly agree’ (4).

Suppose you have to cross-culturally adapt this item for use in a research 
project in the USA. You expect that over 50% of the respondents will 
answer:Â€‘not applicable’ to this item. How would you deal with that item if 
you know that:

(a)	 The item is one of 10 items in a scale to assess physical functioning, 
assuming a reflective model.

(b)	 The item is one of 10 items in a scale to assess physical functioning, 
based on IRT, and therefore assuming a hierarchy in the difficulty of the 
items.

(c)	 The item is one of 10 items in an index concerning social participation, 
assuming a formative model.

5.â•‡ Use of sum-scores

(a)	 In Assignment 2 of Chapter 2 we introduced the Neck Bournemouth 
Questionnaire, and concluded that this questionnaire included several 
different constructs. The authors calculate an overall score of the seven 
items. Do you agree with this decision?

(b)	 Some of the Neck Disability Index (NDI) items are presented in Table 
3.6. Do these items correspond with a reflective model or a formative 
model?

(c)	 Would you calculate a sum-score for this questionnaire?
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Table 3.6â•‡ Some items of the Neck Disability Index

(1) Pain intensity
◻  I have no pain at the moment
◻  The pain is very mild at the moment
◻  The pain is moderate at the moment
◻  The pain is fairly severe at the moment
◻  The pain is very severe at the moment
◻  The pain is the worst imaginable at the moment

(2) Personal care (washing, dressing, etc.)
◻  I can look after myself normally without causing extra pain
◻  I can look after myself normally but it causes extra pain
◻  It is painful to look after myself and I am slow and careful
◻  I need some help but manage most of my personal care
◻  I need help every day in most aspects of self-care
◻  I do not get dressed, I wash with difficulty and stay in bed

(3) Lifting
◻  I can lift heavy weights without extra pain.
◻  I can lift heavy weights but it gives extra pain.
◻  �Pain prevents me from lifting heavy weights off the floor, but I could manage if 

they are conveniently positioned, for example on a table.
◻  �Pain prevents me from lifting heavy weights, but I can manage light to 

medium weights if they are conveniently positioned
◻  I can lift very light weights.
◻  I cannot lift or carry anything at all.

(4) Reading
◻  I can read as much as I want to with no pain in my neck.
◻  I can read as much as I want to with slight pain in my neck.
◻  I can read as much as I want with moderate pain in my neck.
◻  I can’t read as much as I want because of moderate pain in my neck.
◻  I can hardly read at all because of severe pain in my neck.
◻  I cannot read at all.

(5) Headaches
◻  I have no headaches at all.
◻  I have slight headaches, which come infrequently.
◻  I have moderate headaches, which come infrequently.
◻  I have moderate headaches, which come frequently.
◻  I have severe headaches, which come frequently.
◻  I have headaches almost all the time.
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4

Field-testing:Â€item reduction and data 
structure

4.1â•‡ Introduction

Field-testing of the measurement instrument is still part of the development 
phase. When a measurement instrument is considered to be satisfactory 
after one or more rounds of pilot-testing, it has to be applied to a large sam-
ple of the target population. The aims of this field-testing are item reduc-
tion and obtaining insight into the structure of the data, i.e. examining the 
dimensionality and then deciding on the definitive selection of items per 
dimension. These issues are only relevant for multi-item instruments that 
are used to measure unobservable constructs. Therefore, the focus of this 
chapter is purely on these measurement instruments. Other newly devel-
oped measurement instruments (e.g. single-item patient-reported outcomes 
(PROs)) and instruments to measure observable constructs go straight from 
the phase of pilot-testing to the assessment of validity, responsiveness and 
reliability (see Figure 3.1).

It is important to distinguish between pilot-testing and field-testing. 
Broadly speaking, pilot-testing entails an intensive qualitative analysis of the 
items in a relatively small number of representatives of the target population, 
and field-testing entails a quantitative analysis. Some of these quantitative 
techniques, such as factor analysis (FA) and the item response theory (IRT), 
require data from a large number of representatives of the target popula-
tion. This means that for adequate field-testing a few hundred patients are 
required.

In this chapter, the various steps to be taken in field-testing are described 
in chronological order. We start to examine the responses to the individ-
ual items. In multi-item instruments based on a formative model (see 
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Sections 2.5 and 3.4.3), item reduction is based on the importance of the 
items. Therefore, the importance of the items has to be judged by the 
patients in order to decide which items should be retained in the instru-
ment. In the case of reflective models, FA is one of the methods used for 
item reduction, and at the same time, this is a method to decide on the 
number of relevant dimensions. After the identification of various dimen-
sions, the items within each dimension are examined in more detail. Note 
that in all these phases, item reduction and adaptation of the measure-
ment instrument may take place.

4.2â•‡ Examining the item scores

The example in this section concerns a multi-item questionnaire to assess the 
coping behaviour of patients with hearing impairments:Â€the Communication 
Profile of the Hearing Impaired (CPHI). There is evidence that coping Â�behaviour 
is a more relevant indicator of psychosocial problems in people with hearing 
impairment than the degree and nature of the hearing impairment (Mokkink 
et al., 2009). The CPHI questionnaire was derived from a more extensive US 
questionnaire. In this example, we focus on the dimension of maladaptive 
behaviour. The eight items of this scale are presented in Table 4.1. Consecutive 
patients (n = 408) in an audiological centre completed the questionnaire. The 
items were scored on a Likert scale (score 0–4), ranging from ‘usually’ or ‘almost 
always’ (category 0) to ‘rarely’ or ‘almost never’ Â�(categoryÂ€4). Table 4.1 shows the 
percentage of missing scores for each item and the distribution of the popu-
lation over the response categories. From these data, a number of important 
characteristics of the items can be derived. This holds for instruments based on 
formative models as well as on reflective models.

4.2.1â•‡ Missing scores
Missing scores and patterns of missing scores may point to various problems. 
If scores are often missing for some items, we have to take a closer look at 
the formulation of these items. Possible explanations for incidental missing 
scores are that the patients do not understand these items, the items are not 
applicable to them, or the patients’ answers do not fit the response options. 
Missing scores might also occur when patients don’t know the answer or 
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Table 4.1â•‡ Presentation of missing scores and distribution of the responding 
population (n = 408) over the response categories of the CPHIÂ€– ‘maladaptive 
behaviour’ scale

Missing 
scores

Distribution of responding 
population (%) over the response 
options

Item Content of the items (% of 408)  â•› 0    1    2    3   4

19 One way I get people to 
repeat what they said 
is by ignoring them

1.2 0.7 2.2 5.5 26.3 65.3

32 I tend to dominate 
conversations so I 
won’t have to listen to 
others

1.0 2.2 6.7 7.2 22.5 61.4

37 If someone seems 
irritated at having to 
repeat, I stop asking 
them to do so and 
pretend to understand

1.7 9.5 15.7 8.5 34.6 31.7

38 I tend to avoid social 
situations where 
I think I’ll have 
problems hearing

1.7 8.2 18.5 14.2 22.7 36.4

41 I avoid conversing with 
others because of my 
hearing loss

0.7 4.0 7.7 9.1 32.0 47.2

44 When I don’t understand 
what someone said, 
I pretend that I 
understood it

0 2.0 8.8 8.6 46.1 34.5

48 I avoid talking to 
strangers because of 
my hearing loss

0.2 4.9 7.1 8.9 26.8 52.3

58 When I don’t understand 
what someone has 
said, I ignore them

0.2 5.4 7.9 8.8 36.9 41.0
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don’t want to give the answer. The latter might be the case, for example, for 
items about sexual activity or about income. After an appropriate pilot study, 
all these reasons for missing scores should have already been identified and 
remedied. Many missing scores at the end of the questionnaire may point to 
loss of concentration or motivation of the patients. In Table 4.1, we see that 
for the items of the CPHI subscale ‘maladaptive behaviour’ there were inci-
dental missing scores, but less than 2% per item.

It is difficult to say what percentage of missing scores is acceptable. One 
should consider deleting incidental items with a large percentage of missing 
scores, and try to replace them with items for which less missing values are 
expected. The decision should be based on the weighting between percent-
age of missing scores and the importance of that specific item. It is quite 
arbitrary where the border between ‘acceptable’ and ‘not acceptable’ lies, but 
in our opinion, in most cases less than 3% is acceptable, and more than 15% 
is not acceptable.

4.2.2â•‡ Distribution of item scores
It is important to inspect the distribution of the score at item level in order 
to check whether all response options are informative, and to check whether 
there are items for which a large part of the population has the same score.

To check whether all response options are informative, using classical test 
theory (CTT), we can determine to what extent the response options are 
used. If there are too many response options in an ordinal scale, there may be 
categories that are seldom used. In that case, combining these options might 
be considered. For example, if on a seven-point ordinal scale the extreme 
categories are not frequently used, combining the categories 1 andÂ€2, and 
categories 6 and 7 might be an option.

In IRT analysis, it is possible to draw per item response curves for each 
response option on the ordinal scale. These response curves present the 
probability of choosing that option, given a certain level of the trait. We 
have seen such response curves in Figure 2.5, in which three dichotomous 
items were presented. Items with ordinal response options result in multiple 
curves per item. The response curve of item 58 of the CPHI is presented 
in Figure 4.1. At the lower trait levels, patients most probably score in cat-
egory 0, and at the highest trait level, category 4 is the most probable score. 
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At trait level 0, category 3 will most probably be chosen as the response 
option. We see that there is no position on the trait level where category 2 
has the highest probability to be scored. So, for item 58, category 2 does not 
add much information. When items have many response options, there is a 
higher chance that some are non-informative. If in a questionnaire one spe-
cific response category provides little information for almost all items, one 
may decide to delete this category.

The distribution of the population over the response categories also pro-
vides information about the discriminative power of an item. Items for 
which a large part of the population has a similar score are barely able to 
discriminate between patients, and therefore contain less information. The 
distribution of the population over the response categories can easily be seen 
from frequency tables, as shown in Table 4.1. For items scored on a continu-
ous scale (e.g. a visual analogue scale), the mean item score and the standard 
deviation (SD) provide information about the distribution. Very high or very 
low mean item scores represent items on which almost everybody agrees or 
disagrees, or, if items assess ability, very easy items that almost everybody is 
able to do or difficult items that almost nobody is able to do. Item variance is 
expressed in the SD of the item scores. Items with a small SD, indicating that 
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Figure 4.1	 Response curves for the five response options of item 58 of the CPHI.
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the variation in population scores for this item is low, will contribute little 
to discrimination of the population. Clustering of the scores of all patients 
into one or two response categories often occurs in the highest or lowest 
response category, but may also occur in one of the middle categories.

With regard to the CPHI subscale ‘maladaptive behaviour’, in Table 4.1 we 
see that for all items the majority of the population scored 3 or 4. This means 
that on average the patients do not exhibit much ‘maladaptive behaviour’.

The distribution of the population over response categories also provides 
information about the difficulty of items. For this analysis, we only use the 
patients who responded. In the case of dichotomous responses, item diffi-
culty equals the percentage of patients endorsing the item. For example, in 
an instrument measuring ‘walking ability’, an item containing an activity that 
only 10% of the population scores positive, is more difficult than an activity 
for which 95% of the population scores positive. The difficulty of the items 
can also be judged in an ordinal scale with a small number of Â�categories. 
Table 4.1 shows that the eight items of the maladaptive behaviour scale have 
about the same degree of ‘difficulty’. In the context of behaviour, ‘easy items’ 
reflect behaviour that patients with slight maladaptive behaviour will already 
exhibit, while ‘difficult’ items reflect behaviour that is typical for patients with 
severe maladaptive behaviour. What this means for the use of the scale will 
be discussed in Section 4.6, after we have examined the structure of the data 
and identified which scales can be distinguished. We will first discuss item 
reduction in instruments based on formative models.

4.3â•‡ Importance of the items

The issue of importance of the items is most relevant for formative models. 
As explained in Chapter 3 (Section 3.4.3), the strategy for the development 
of multi-item instruments based on formative models (indexes) differs from 
the strategy for the development of multi-item instruments based on reflective 
models (scales). As stated in Section 3.4.3, FA has no role in instruments based 
on formative models. In these instruments the most important items should 
all be represented. This implies that for the decision with regard to which 
items should be included we need a rating of their importance. These ratings 
of importance can be obtained from focus groups or interviews with patients, 
but they are usually determined during field-testing. For example, Juniper etÂ€al. 
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(1992) used such a method for the development of the Asthma Quality of Life 
Questionnaire (see Assignment 3, Chapter 3). They had a set of 152 poten-
tial items to measure several domains of quality of life impairment that are 
important to adult patients with asthma. Domains of quality of life impairment 
included asthma symptoms, emotional problems caused by asthma, trouble-
some environmental stimuli, problems associated with the avoidance of envir-
onmental stimuli, activities limited by asthma and practical problems. In a 
structured interview, 150 adults with asthma were asked which of the 152 items 
had been troublesome for them at any time during the past year. In addition, 
they were asked to indicate the importance of each of the identified items on a 
five-point scale, ranging from ‘not very important’ to ‘extremely important’. For 
each item the percentage that labelled the item as troublesome (frequency), and 
the mean importance score of those labelling the items as troublesome were 
multiplied, resulting in a mean impact score between 0 and 5. For example, 
92% reported ‘shortness of breath’ as troublesome, and the importance of this 
item was, on average, rated as 3.60, resulting in a mean impact score of 3.31 
(0.92 × 3.60). The item ‘keeping surroundings dust-free’ was rated as trouble-
some by 51% of the population, with a mean importance score of 3.96, resulting 
in a mean impact score of 2.02 (0.51 × 3.96). Within each domain, Juniper etÂ€al. 
(1992) chose the items with the highest mean impact score for their instru-
ment. Additional criteria were adequate representation of both physical and 
emotional function and a minimum of four items per domain.

Performing item reduction in this way implies that items with low mean 
impact scores are not included in the measurement instrument. The reason 
for this is that these items are either not troublesome or not important for 
most of the patients. In this way, the final selection of items for the instru-
ment is made.

For measurement instruments based on reflective models, the import-
ance of the items for the patients is a less relevant criterion for item reduc-
tion. For these models, specific statistical techniques are available to guide 
item reduction. These will be discussed in the remainder of this chapter.

4.4â•‡ Examining the dimensionality of the data:Â€factor analysis

Identification of dimensions is important for the scoring of items (as we 
saw in Section 3.6), but also for the interpretation of the results (as will 
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be discussed in Chapter 8). FA is the most used method to examine the 
dimensionality of the data. FA is an extension of CTT, and is based on 
item correlations. The basic principle is that items that correlate highly 
with each other are clustered in one factor, while items within one factor 
preferably show a low correlation with items belonging to other factors. 
The goal of FA is to examine how many meaningful dimensions can be dis-
tinguished in a construct. In addition, FA serves item reduction, because 
items that have no contribution or an unclear contribution to the factors 
can be deleted.

Within FA, exploratory FA (EFA) and confirmatory FA (CFA) can be dis-
tinguished. When there are no clear-cut ideas about the number of dimen-
sions, the factor structure of an instrument can best be investigated with 
EFA. If previous hypotheses about dimensions of the construct are avail-
able, based on theory or previous analyses, CFA is more appropriate:Â€it tests 
whether the data fit a predetermined factor structure. For that reason, EFA is 
usually applied in the development phase of the instrument. CFA is mainly 
used to assess construct validity, and will be discussed in Chapter 6, which 
focuses on validity.

In this chapter, we describe EFA. Within EFA, principal components ana-
lysis (PCA) and common FA can be distinguished. Although the theoretical 
principles of PCA and common FA differ, the results are usually quite simi-
lar. In practice, PCA is most often used because, statistically, it is the simplest 
method. For details about the choice between various methods of FA we 
refer to a paper written by Floyd and Widaman (1995). We are not going to 
elaborate in detail on the statistical background of FA, but we will describe 
the principles and various steps that must be taken. We use an example to 
illustrate the procedure and interpretation. For introductory information 
about FA we refer to books written by Fayers and Machin (2007:Â€Chapter 6) 
and Streiner and Norman (2008: Appendix C).

4.4.1â•‡ Principles of exploratory factor analysis
FA is based on item correlations. Items that correlate highly with each other 
are clustered in one factor, and these items share variance which is explained 
by the underlying dimension. With FA, we try to identify these factors, and 
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explain as much as possible of the variance with a minimal number of fac-
tors. This is done by solving the following set of equations, which look like a 
series of regression equations:

Y1 = λ11F1 + λ12F2+ … + λ1mFm + ε1,
Y2 = λ21F1 + λ22F2+ … + λ2mFm + ε2,
…….…………………………….� (4.1)

Yk = λk1F1 + λk2F2+ … + λkmFm + εk.

In these equations, Yi are the observed values of the k items, Fj are the m 
factors and λij represent the loadings of items Y on the respective factors. 
Each of the factors contributes to some extent to the different items, as can 
be seen in Formula 4.1. We prefer items that load high on one factor and low 
on the others. The factors F1 to Fm are uncorrelated. When both Fj and Yi are 
standardized (mean = 0; variance = 1) then λij can be considered as stand-
ardized regression coefficients, based on the correlation matrix of Y with F, 
as presented in Table 4.2.

Table 4.2â•‡ Correlation matrixa of Yi with Fj, representing factor loadings (λij), and explained 
variances of factors and items

Factor loadings
Communalities = 

Variable Factor 1 Factor 2 Factor 3 … Factor m explained variance (R2)

Y1 0.658 0.048 –0.324 … … Σ λ1j
2 = �explained variance of 

Y1 by F1 … Fm

Y2 0.595 0.035 –0.527 … … Σ λ2j
2 = �explained variance of 

Y2 by F1 … Fm

Y3 0.671 –0.116 0.154 … …
… … … … … …
Yk–1 0.511 0.500 –0.085 … …
Yk 0.459 0.441 –0.185 … … Σ λkj

2 = �explained variance of 
Yk by F1 … Fm

Eigenvalue Σ λi1
2 Σ λi2

2 Σ λi3
2  … Σ λim

2 Σ Σ λij
2  = �explained variance 

of Y1 … Yk by 
F1Â€…Â€Fm

aâ•›The term ‘Component loading matrix’ is used in SPSS.
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As illustration, some (fictive) factor loadings are presented in Table 4.2. 
We see that items Y1 and Y2 both load high on factor F1, and low on factor 
F2. This means that they both contribute considerably to the measurement 
of the dimension represented by factor F1, and less to the dimension rep-
resented by factor F2. The items Yk–1 and Yk contribute to the dimensions 
represented by factors F1 and F2.

Several parameters in Table 4.2 need to be explained. The term λij
2 is the 

square of the factor loading, and represents the percentage of variance of 
the item i that is explained by the factor j. For each factor, looking at the 
columns in Table 4.2, the sum of the squared factor loadings represents the 
total amount of variance in the data set that is explained by this factor and 
this is referred to as the eigenvalue of the factor. These eigenvalues are pre-
sented in the last row of Table 4.2. The eigenvalue divided by the number of 
items in the questionnaire is the percentage of variance in the data explained 
by the factor. For each item, looking at the rows in the table, the sum of the 
squared factor loadings represents the amount of explained variance of this 
item via all factors. This is called the communality.

PCA aims to explain as much as possible of the total variance in the instru-
ment, with a minimal number of factors:Â€ Σâ•›Σ λij

2  is maximized. In PCA, the 
first factor F1 explains the maximum variation Σ λi1

2â•›, then F2, uncorrelated 
with F1, explains the maximum amount of the remaining variance Σ λi2

2â•›, and 
so on.

4.4.2â•‡ Determining the number of factors
As an example, we examine the factor structure of a questionnaire to assess 
the physical workload of employees with musculoskeletal complaints (Bot 
et al., 2004a). From the ‘workload section’ of the Dutch Musculoskeletal 
Questionnaire (Hildebrandt et al., 2001) they selected only items that 
expressed force, dynamic and static load, repetitive load, (uncomfortable) 
postures, sitting, standing and walking. These 26 items formed the starting 
point of the FA. Response options were 0, 1, 2 or 3, corresponding to Â�‘seldom 
or never’, ‘sometimes’, ‘often’ and ‘(almost) always’, thereby estimating the 
frequencies of postures, movements and tasks. The goal of their FA was to 
obtain a small number of factors that measure different dimensions of the 
construct ‘physical workload’. We describe here the main steps and results 
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of the analysis of data from 406 employees with complaints of the upper 
extremities. For the data set and syntax, we refer to the website www.clini-
metrics.nl. This enables you to perform the analysis yourselves.

4.4.2.1â•‡ Step 1:Â€correlation of items
A FA starts by examining the inter-item correlation matrix, presenting the 
correlation of all items with each other. Items that do not correlate with any 
of the others (< 0.2) can immediately be deleted, and items that show a very 
high correlation (> 0.9) must be considered carefully. If there are items that 
are almost identical, one of them may be deleted. Variables negatively cor-
related with the others may need a reverse score to facilitate interpretation 
at a later stage.

4.4.2.2â•‡ Step 2:Â€the number of factors to be extracted
Table 4.3 shows the first 10 factors (called components in PCA) with their 
eigenvalues for the physical workload questionnaire. Looking at the column 
of the cumulative percentage of explained variances, we see that the first 
two factors explain 48.7% of the variance in the data set, the first six factors 
explain 68.0% and the first 10 factors explain 79.5%. Thus, the other 16 fac-
tors (there were 26 items and therefore a maximum of 26 factors) explain the 
remaining 20.5%.

Several criteria are used to decide how many factors are relevant. One 
criterion is to retain only those factors with an eigenvalue larger than 1. In 
the example (Table 4.3), that would be six factors. Another criterion to con-
sider is the relative contribution of each additional factor. This can be judged 
from the ‘elbow’ in the scree plot (see Figure 4.2), in which the eigenvalue is 
plotted against the factors (components). Scree is a term given to an accu-
mulation of broken rock fragments at the base of cliffs or mountains. This 
figure shows that the first two factors explain most of the variance, and a 
third factor adds very little extra information (the slope is almost flat). This 
corresponds with the observation in Table 4.3 that the percentages of vari-
ance explained by components 3–6 are relatively low.

Furthermore, it is important to check the cumulative percentage of 
explained variance after each factor. If the cumulative explained variance is 
low, more factors might be retained to provide a better account of the vari-
ance. Bot et al. (2004a) decided to retain six factors at this stage.
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Figure 4.2	 Scree plot of the eigenvalues of the ‘physical workload’ questionnaire. Reproduced 
from Bot et al. (2004a), with permission from BMJ Publishing Group, Ltd.

Table 4.3â•‡ Output PCA of 26-item ‘physical workload’ questionnaire showing the 
eigenvalues and percentages of variance explained by the factors

Total variance explained

Component

Initial eigenvalues

Total % of Variance Cumulative %

1 8.966 34.484 34.484
2 3.701 14.236 48.721
3 1.575 6.058 54.779
4 1.349 5.189 59.967
5 1.077 4.141 64.108
6 1.014 3.898 68.006
7 0.872 3.355 71.361
8 0.797 3.067 74.428
9 0.718 2.763 77.191
10 0.588 2.261 79.452
… … … …
25 0.164 0.632 99.470
26 0.138 0.530 100.000

Extraction method:Â€principal components analysis.
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4.4.3â•‡ Rotation and interpreting the factors

4.4.3.1â•‡ Step 3:Â€rotation
Rotation facilitates the interpretation of the factors:Â€it results in factor load-
ings that are closer to 1 or closer to 0. The communalities (i.e. the explained 
variance of Yi), remain the same, but the percentage of variance explained by 
each factor might change. There are various rotation methods. Orthogonal 
rotation (e.g. Varimax) is often chosen, as we did in this example. This led to 
the rotated component matrix (shown on the website www.clinimetrics.nl).

4.4.3.2â•‡ Step 4:Â€interpretation of the factors
It is important to note at this point that EFA is a statistical technique that requires 
the researcher to make subjective choices at several points. They should give 
‘labels’ to the factors. This means that they should examine which items load on 
the same factor, decide what the common ‘thing’ is that these items measure, 
and give the factor a name that reflects the meaning of these items.

The decision with regard to how many factors should be retained is also 
quite arbitrary. The content of the factors and their interpretability often 
have a decisive role, because we don’t want an instrument with factors with 
an unclear content. This choice is then supported by one or more of the 
other criteria:Â€eigenvalue > 1 or scree plot. In our example there were six 
factors with eigenvalue > 1, but the scree plot showed that after two factors 
the slope flattened substantially. Bot et al. (2004a) could not find a meaning-
ful interpretation for six factors. As their goal was to obtain a small number 
of factors, they decided to repeat the FA choosing only two factors, as sug-
gested by the scree plot.

By repeating PCA with a two-factor model and applying orthogonal rota-
tion (Varimax), the factor loadings depicted in Table 4.4 appeared. We see 
that most items load on either one of the two factors. Taking a closer look at 
the items, we see that factor 1 contains items related to ‘heavy physical work’ 
and factor 2 contains items that reflect ‘long-lasting postures and repetitive 
movements’. These two factors could be interpreted in a meaningful way.

4.4.4â•‡ Optimizing the dimensionality
For item reduction, we examine the factor loadings in Table 4.4 in detail. 
Items that hardly load at all on any of the factors can be deleted. A min-
imum loading of 0.5 (Nunnally and Bernstein, 1994; p. 536) is usually taken 
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Table 4.4â•‡ Factor loadings for two factors after Varimax rotation. Bot et al. 
(2004a), with permission

Factor 1 Factor 2

1 Standing 0.71 0.08
2 Sitting –0.77 0.16
3 Video display unit work –0.72 0.25
4 Walking 0.67 –0.01
5 Kneeling/squatting 0.72 0.09
6 Repetitive movement 0.09 0.77
7 Twisted posture 0.35 0.57
8 Neck bent forward 0.14 0.71
9 Turning/bending neck 0.15 0.71
10 Wrists bent or twisted 0.15 0.73
11 Hands above shoulders 0.65 0.27
12 Hands below knees 0.68 0.22
13 Moving loads (>â•›5 kg) 0.77 0.19
14 Moving loads (>â•›25 kg) 0.62 0.19
15 Exerting force with arms 0.82 0.29
16 Maximal force exertions 0.77 0.34
17 Physical hard work 0.77 0.29
18 Static posture –0.20 0.78
19 Uncomfortable posture 0.50 0.55
20 Working with vibrating tools 0.36 0.27
21 Handling pedals with feet 0.15 0.11
22 Climbing stairs 0.38 0.00
23 Often squatting 0.69 0.22
24 Walking on irregular surfaces 0.40 –0.02
25 Sitting/moving on knees 0.54 0.05
26 Repetitive tasks with arms/hands –0.10 0.77
Eigenvalue 8.97 3.70
Variance explained before rotationa 34.5% 14.2%
Variance explained after rotationa 30.8% 17.9%
Total variance explained 48.7%

Factor loadings ≥ 0.5 are in bold print.
Eigenvalues refer to the total variance explained by each factor.
aâ•›�Percentage of the variance explained by each factor before and after Varimax 
rotation.
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as threshold. With >â•›0.5 as threshold, the items 20, 21, 22 and 24 are prob-
lematic. These items apparently do not measure one of the aspects of the 
construct workload, and were therefore deleted from the measurement 
instrument. They should be deleted one by one, because the deletion of one 
item may change the loadings of the other items. Therefore, PCA should be 
performed again, after the deletion of each item.

Items that load substantially (>â•›0.3) on more than one factor also need 
consideration (Nunnally and Bernstein, 1994; p. 536). Although these items 
do measure aspects of workload, they are sometimes deleted because they 
hamper a clear interpretation. Moreover, in scoring they would add to more 
than one dimension. The decision with regard to whether or not to retain 
these items in the instrument will depend on how important they are for the 
construct under study. Items 7 and 19 were deleted for this reason. Bot et al. 
(2004a) also deleted the two items ‘sitting’ and ‘video display unit work’ at 
this point, because of their negative loading. In our example, we keep these 
items in to see what happens. So, based on the FA, we retain 20 of the ori-
ginal 26 items: 14 items contributing to factor 1 representing ‘heavy physical 
work’, and six items contributing to factor 2 representing ‘long-lasting pos-
tures and repetitive movements’.

Selecting new items is still an option in this phase. When performing FA 
we might find a factor that consists of only a few items. If this factor rep-
resents a relevant aspect of the construct under study, we might consider 
formulating extra items for this dimension. In the example of ‘physical work-
load’, the items ‘sitting’ and ‘video display unit work’ might have resulted in 
a separate factor if there had been more items representing this same aspect. 
If the authors had considered this to be a relevant aspect, they could have 
formulated extra items to obtain a stronger factor. Ideally, there should be 
a minimum of three items contributing to one factor. Note that a new field 
study is required to examine the consequences of adding extra items to the 
factor structure (reflecting the iterative process represented in Figure 3.1).

4.4.5â•‡ Some remarks on factor analysis
First of all, we should note that when the conceptual phase of the development 
of a measurement instrument has been well thought out (i.e. there is a con-
ceptual model), and an extensive examination of the literature has taken place, 
CFA could immediately be applied. In fact, it is strange that one would still have 
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to explore the dimensions of the construct. For item reduction (i.e. deleting 
items that do not clearly load on one of the dimensions), EFA is well justified.

In our example, we used SPSS. The item correlations are calculated with 
Pearson’s correlation coefficients, which assume normal distributions of the 
responses to the items. However, in the case of dichotomous response cat-
egories, FA should be based on tetrachoric correlations, and in the case of 
ordinal data polychoric correlations can be calculated. The program Mplus 
is suitable for these analyses.

A substantial number of patients are required to perform FA:Â€rules of thumb 
vary from four to 10 patients per item with a minimum of 100 patients (Kline, 
2000, p. 142). Other methods can be applied for smaller sample sizes.

4.4.6â•‡ Other methods to examine the dimensionality
One of the methods used to assess multidimensionality, applicable with smaller 
numbers, is multifactor or multidimensional inventories (Streiner and Norman, 
2008, p. 96). According to theory or by examining inter-item Â�correlations, items 
are clustered into a number of scales. Then, for each item, correlations with its 
own scale and the other scales are calculated. An item is said to belong to a sub-
scale when the correlation with its own scale is high and the correlation with 
other scales is low. This method is far less powerful than FA.

Within IRT analysis, certain methods can be used to examine the dimen-
sionality of a measurement instrument. However, these are quite complex, 
and seldom used for this purpose (Embretson and Reise, 2000). The num-
ber of dimensions is usually determined by FA. Subsequently, items in each 
dimension are examined in more detail by IRT analysis.

When FA or other methods have shown which items cluster into one 
dimension, we proceed to examine the functioning of items within such a 
unidimensional scale. We start by describing the principles of internal con-
sistency based on CTT, followed by an illustration of examination of item 
characteristics with IRT techniques.

4.5â•‡ Internal consistency

Internal consistency is defined by the COSMIN panel as the degree of inter-
relatedness among the items (Mokkink et al., 2010a). In a unidimensional 
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(sub)scale of a multi-item instrument, internal consistency is a measure of 
the extent to which items assess the same construct. If there is one item 
that measures something else, this item will have a lower item-total correl-
ation than the other items. If the assessment of internal consistency follows 
FA, as it should, it is obvious that the items within one factor will correlate. 
However, maybe one wants an instrument to be as short as possible. In that 
case, examination of the internal consistency is aimed at item reduction. 
It indicates which items can best be deleted, and also how many items can 
be deleted. First, we will examine inter-item and item-total correlations, 
and then assess and discuss Cronbach’s alpha as a parameter of internal 
consistency.

4.5.1â•‡ Inter-item and item-total correlations
Inter-item correlations and item-total correlations indicate whether or not 
the item is part of the scale. We already had a look at the inter-item correl-
ation matrix as the first step in FA, described in Section 4.4.2.1. After FA, 
the inter-item correlations found for items within one dimension should be 
between 0.2 and 0.5. If the correlation of two items is higher than 0.7, they 
measure almost the same thing, and one of them could be deleted. The range 
0.2–0.5 is quite wide, but is dependent on the broadness of the construct 
to be measured. For example, ‘extraversion’ is a broad concept, expecting 
lower inter-item correlations within one scale, compared with a scale for 
‘talkativeness’, which is a rather narrow concept.

The item-total correlation is a kind of discrimination parameter, i.e. it 
gives an indication of whether the items discriminate patients on the con-
struct under study. For example, patients with a high score on a depression 
scale must have a higher score for each item than patients with a low score 
on the depression scale. If an item shows an item-total correlation of less 
than 0.3 (Nunnally and Bernstein, 1994), it does not contribute much to the 
distinction between mildly and highly depressed patients, and is a candidate 
for deletion.

4.5.2â•‡ Cronbach’s alpha
Cronbach’s alpha is a parameter often used to assess the internal consist-
ency of a scale that has been shown to be unidimensional by FA. The basic 
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principle of examining the internal consistency of a scale is to split the items 
in half and see whether the scores of two half-scales correlate. A scale can 
be split in half in many different ways. The correlation is calculated for each 
half-split. Cronbach’s alpha represents a kind of mean value of these correla-
tions, adjusted for test length. Cronbach’s alpha is the best known parameter 
for assessing the internal consistency of a scale.

We continue with the example of the ‘physical workload’ questionnaire 
(Bot et al., 2004a); see website www.clinimetrics.nl. In Sections 4.4.3 and 
4.4.4 we identified a factor ‘heavy physical work’, which consisted of 14 items. 
Cronbach’s alpha is 0.78 for this factor. In SPSS, using the option ‘Cronbach’s 
alpha if item deleted’, one can see what the value of Cronbach’s alpha would 
be if that item was deleted (Table 4.5). It appears that Cronbach’s alpha 
increases most if item 2 is deleted (i.e. the item with the highest value in the 
last column); in the next step, after running a new analysis without item 2, 
deletion of item 3 would increase Cronbach’s alpha most. This comes as no 
surprise, because these were the two items that showed negative correlations 
with the factor. Without these two items, Cronbach’s alpha becomes 0.92 for 
a 12-item scale (see website www.clinimetrics.nl).

Table 4.5â•‡ Item total statistics

Scale mean if 
item deleted

Scale variance 
if item deleted

Corrected item-
total correlation

Squared multiple 
correlation

Cronbach’s alpha 
if item deleted

1 23.35 37.953 0.511 0.607 0.749
2 23.43 56.801 –0.610 0.698 0.858
3 23.74 54.811 –0.523 0.531 0.848
4 23.56 39.167 0.491 0.462 0.751
5 24.19 40.637 0.636 0.595 0.745
11 24.05 40.392 0.583 0.465 0.747
12 24.21 40.535 0.648 0.582 0.744
13 23.69 37.034 0.756 0.705 0.725
14 24.20 40.379 0.606 0.614 0.746
15 23.57 35.425 0.811 0.769 0.715
16 23.97 37.691 0.786 0.773 0.726
17 23.85 36.971 0.743 0.674 0.726
23 23.76 38.618 0.650 0.525 0.738
25 24.47 43.670 0.455 0.352 0.762
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For reasons of efficiency, one might want to further reduce the number of 
items. A well-accepted guideline for the value of Cronbach’s alpha is between 
0.70 and 0.90. A value of 0.98, for example, indicates that there is a redun-
dancy of items, and we might therefore want to delete some of the items. 
Again, the option ‘Cronbach’s alpha if item deleted’ helps us to choose which 
item(s) to delete (i.e. the item with the highest value in the last column after 
running a new analysis). If we want an instrument with a limited number 
of items (e.g. to save time on a performance test), we can delete items until 
Cronbach’s alpha starts to decrease below acceptable levels. As the ‘phys-
ical workload’ questionnaire was already short and easy to fill in, Bot et al. 
(2004a) decided not to reduce the number of items any further.

4.5.3â•‡ Interpretation of Cronbach’s alpha
The internal consistency of a scale is often assessed, merely because it is so 
easy to calculate Cronbach’s alpha. It requires only one measurement in a 
study population, and then ‘one click on the button’. However, this α coef-
ficient is very often interpreted incorrectly. As a warning against misinter-
pretation, we will now describe what Cronbach’s alpha does not measure. 
For further details about this issue we refer to a paper written by Cortina 
(1993).

First, Cronbach’s alpha is not a measure of the unidimensionality of a 
scale. When a construct consists of two or three different dimensions, then a 
reasonably high value for Cronbach’s alpha can still be obtained for all items. 
In our example of the ‘physical workload’ questionnaire (Bot et al., 2004a) 
we identified two factors:Â€the ‘heavy physical work’ factor consisting of 12 
items with a Cronbach’s alpha of 0.92, and the ‘long-lasting postures and 
repetitive movements’ factor, consisting of six items with a Cronbach’s alpha 
of 0.86. However, if we calculate Cronbach’s alpha for all 20 items in the 
instrument, the value is 0.90. This is a high value for Cronbach’s alpha, and 
does not reveal that there are two dimensions in this instrument. This shows 
that unidimensionality cannot be assessed with Cronbach’s alpha.

Secondly, Cronbach’s alpha does not assess whether the model is reflect-
ive or formative. It occurs quite often that only when a low Cronbach’s alpha 
is observed, one starts to question whether one would expect the items 
in a measurement instrument to correlate (i.e. whether the measurement 
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instrument is really based on a reflective model). But it is not as easy as 
simply stating that when Cronbach’s alpha is low, it probably is a formative 
model. An alternative explanation for a low Cronbach’s alpha is that the con-
struct may be based on a reflective model, but the items are poorly chosen. 
So, Cronbach’s alpha should not be used as a diagnostic parameter to distin-
guish between reflective and formative models.

Thirdly, it is sometimes argued that Cronbach’s alpha is a parameter of val-
idity. Cortina (1993) stated quite convincingly that this is a deceiving thought, 
because an adequate Cronbach’s alpha (notwithstanding the number of items) 
suggests only that, on average, items in the scale are highly correlated. They 
apparently measure the same construct, but this provides no evidence as to 
whether or not the items measure the construct that they claim to measure. 
In other words, the items measure something consistently, but what that is, 
remains unknown. So, internal consistency is not a parameter of validity.

The value of Cronbach’s alpha is highly dependent on the number of items 
in the scale. We used that principle for item reduction:Â€ when Cronbach’s 
alpha is high we can afford to delete items to make the instrument more 
efficient. Reversely, when the value of Cronbach’s alpha is too low, we can 
increase the value by formulating new items, which are manifestations of 
the same construct. This principle also implies that with a large number of 
items in a scale, Cronbach’s alpha may have a high value, despite rather low 
inter-item correlations.

As can be seen in the COSMIN taxonomy (Figure 1.1), the measurement 
property ‘internal consistency’ is an aspect of reliability, which is the topic 
of Chapter 5. There we will explain why Cronbach’s alpha is expected to be 
higher in instruments with a larger number of items.

4.6â•‡ Examining the items in a scale with item response theory

After we have illustrated how the dimensions in a construct are determined, 
and how the scales can be optimized by FA and further item-deletion based 
on calculations of Cronbach’s alpha, we will show which additional ana-
lyses can be performed when the data fit an IRT model. As we already saw 
in Chapter 2 (Section 2.5.2) IRT can be used to examine item functioning 
characteristics, such as item difficulty and item discrimination. In addition, 
it can be used to estimate the location of the individual items on the level 
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of the trait. Therefore, it is a powerful method with which to examine the 
distribution of the items over the scale in more detail. However, these char-
acteristics can only be examined if the data fit an IRT model.

To illustrate the examination of items in relation to their scale, we will use 
data on the Roland–Morris Disability Questionnaire (RDQ), a 24-item self-
report instrument to assess disability due to low back pain, with a dichotom-
ous response option:Â€yes or no. As the RDQ was originally not developed by 
means of IRT analysis, an explanation of why we use this example is justified. 
First of all, instruments with dichotomous response options are very illustra-
tive of what happens in IRT analysis, and not many newly developed multi-
item scales use dichotomous response options; secondly, the basic principles 
and their interpretations are similar in existing and newly developed scales. 
Note that many new scales use items from already existing scales.

The RDQ was completed by 372 patients suffering from chronic low back 
pain (own data). For all items, we present a frequency distribution. The per-
centage of patients who answered yes to each item, and the discrimination 
and difficulty parameters of all items on the RDQ are presented in Table 4.6. 
For dichotomous items, the frequency of endorsement is an indication of 
the item difficulty. Therefore, it is not surprising that the Pearson correlation 
coefficient between the percentage of patients answering yes and the diffi-
culty parameter was 0.966 in this example.

4.6.1â•‡ Fit of an item response theory model
For IRT analysis, we first have to choose one of the available IRT models. 
The RDQ is an already existing questionnaire, so we therefore examined 
which IRT model showed the best fit with the RDQ data in the study popu-
lation:Â€ the one-parameter Rasch model or the two-parameter Birnbaum 
model. If we are developing a new instrument (i.e. selecting and formulating 
new items), we can do it the other way around:Â€first choose a model and then 
select only items that fit this model. For example, a researcher may try to 
develop an instrument that fits a one-parameter Rasch model, i.e. all items 
should have the same slope of the item characteristic curve. When testing 
a large number of items, only items with a high and similar discrimination 
parameter (i.e. with steep item characteristic curves) are selected. Items with 
item characteristic curves that deviate too much are deleted. So, in that case 
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Table 4.6â•‡ Frequency distribution, item difficulty and discrimination parameters for 24 items of 
the Roland–Morris Disability Questionnaire (RDQ)

Items of the RDQ % yes
Dicrimination 
parameter a

Difficulty 
parameter b

1 I stay at home most of the time because of my back 57.5 1.338 0.304
2 I change position frequently to try and get my back 

comfortable
5.1 1.349 –2.722

3 I walk more slowly than usual because of my back 25.3 2.142 –0.831
4 Because of my back, I am not doing any of the jobs 

that I usually do around the house
28.2 1.311 –0.927

5 Because of my back, I use a handrail to get upstairs 34.4 1.325 –0.637
6 Because of my back, I lie down to rest more often 29.8 1.361 –0.830
7 Because of my back, I have to hold onto something 

to get out of an easy chair
37.1 1.752 –0.448

8 Because of my back, I try to get other people to do 
things for me

58.6 0.748 0.524

9 I get dressed more slowly than usual because of my 
back

34.4 2.220 –0.492

10 I only stand up for short periods of time because of 
my back

44.9 0.576 –0.383

11 Because of my back, I try not to bend or kneel down 35.5 1.149 –0.647
12 I find it difficult to get out of a chair because of my back 36.8 1.402 –0.516
13 My back is painful almost all the time 18.8 0.921 –1.839
14 I find it difficult to turn over in bed because of my back 38.4 1.684 –0.408
15 My appetite is not very good because of my back pain 92.7 0.755 3.687
16 I have trouble putting on my socks (or stockings) 

because of the pain in my back
29.6 1.434 –0.816

17 I only walk short distances because of my back pain 39.0 1.126 –0.492
18 I sleep less well because of my back 47.6 0.785 –0.138
19 Because of my back pain, I get dressed with help 

from someone else
93.5 1.628 2.245

20 I sit down for most of the day because of my back 79.8 0.482 2.991
21 I avoid heavy jobs around the house because of my back 11.8 1.238 –2.025
22 Because of my back pain, I am more irritable and 

bad tempered with people than usual
61.8 0.422 1.190

23 Because of my back, I go upstairs more slowly than 
usual

28.0 2.533 –0.683

24 I stay in bed most of the time because of my back 96.8 1.471 2.946
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the items are selected or adapted to fit the model, knowing that the measure-
ment instrument is better if the items fit a strict IRT model. Thus, from the 
standpoint of the developer, the model determines the data, and from the 
standpoint of the evaluator, the data determine the model.

The item characteristic curves of the 24 items in the Birnbaum model are 
presented in Figure 4.3. We see that the slopes of the items differ, which means 
that items do not have the same discrimination parameter. This can also be 
seen in Table 4.6, on which Figure 4.3 is based. Remember that the Birnbaum 
model allows the items to have different discrimination parameters (see 
Section 2.5.2). Therefore, it is not surprising that the Birnbaum model fits the 
data better than the Rasch model (analysis performed in Mplus:Â€–2 log likeli-
hood ratioÂ€=Â€–2[(–4406.930Â€– (–4335.224))] = 143.4, dfÂ€= 23; P < 0.001).

We continue with the Birnbaum model and keep all items in the model.

4.6.2â•‡ Distribution of items over the scale
The distribution of items can be seen in Figure 4.3, and the corresponding 
Table 4.6 enables us to take a closer look at the difficulty and discrimination 
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Figure 4.3	 Item characteristic curves of the 24 items of the RDQ in the Birnbaum model.
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parameters of each item in the RDQ. We will first repeat what was said in 
Chapter 2 about the interpretation of these item characteristic curves, and 
then discuss how examination of the distribution of the items over the scale 
can help us to further optimize the scale (i.e. by item reduction or by formu-
lating new items in certain ranges of the scale).

For the interpretation of Figure 4.3, we look back at Figure 2.5 (Section 
2.5.2). Note that in the example in Chapter 2 the question was whether or 
not patients were able to perform a certain activity:Â€a yes answer indicates 
‘more ability’. Note that in the RDQ a yes answer indicates ‘more Â�disability’. 
For example, a yes answer to item 24 ‘I stay in bed most of the time because 
of my back’ indicates much disability; this item has a high positive value 
(i.e. θ = 2.946) and can therefore be found on the right-hand side of the 
scale. Item 21 ‘I avoid heavy jobs around the house because of my back’ has 
a θÂ€ value ofÂ€ –2.025, which indicates less disability. This item is found on 
theÂ€left-hand side of the scale. For the RDQ, the ‘difficult’ items are on the 
left-hand side, and the ‘easy’ items on the right-hand side.

Examination of the distribution of the items over the scale can guide fur-
ther item reduction. For item reduction, we look at items with low discrim-
ination parameters, and also at the locations of the items. Item 22 ‘because 
of my back pain I am more irritable and bad tempered with people than 
usual’ has a flat curve, i.e. a low discrimination parameter (see Table 4.6). 
This means that patients with varying amounts of disability have about the 
same probability to answer this question with yes. When developing a meas-
urement instrument to assess disability, one would not select items with a 
low discrimination parameter, because they discriminate poorly between 
patients with low and high disability. When adapting an existing instru-
ment, items with low discrimination parameters are the first candidates to 
be deleted.

Figure 4.3 shows approximately 10–14 items located quite close to each 
other. If we wanted to reduce items from the RDQ, we might choose to remove 
some of the items with almost the same difficulty parameter. It is best to keep 
the items with the highest discrimination parameter and delete those with a 
lower discrimination parameter. However, the content of the items may also 
play a role, so we should take into account the type of activities involved. 
For example, items 7 and 12 both concern ‘getting out of a chair’, and the 
difficulty parameters of both items (–0.448 andÂ€–0.516) are about the same. 
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Their discrimination parameters differ (1.752 and 1.402), and therefore item 
7, with the highest discrimination parameter, is preferred.

We also see that there are more items at the lower end (left-hand side) of the 
‘ability’ scale, considering that θ = 0 represents the mean ability of the popu-
lation. This means that the RDQ is better able to discriminate patients with a 
low disability than patients with a high disability. If items are to be removed, 
items with a slightly negative difficulty parameter are the first candidates.

The location of the items should be considered against the background of 
the purpose of the instrument. An equal distribution is desired if the instru-
ment has to discriminate between patients at various ranges on the scale. 
However, if the instrument is used to discriminate between patients with 
mild low back pain and severe low back pain (i.e. used as a diagnostic test), 
the large number of items at the range that forms the border between mild 
and severe low back may be very useful, as the test gives the most informa-
tion about this range.

Examination of the distribution of the items over the scale shows whether 
there is a scarceness of items (i.e. gaps at certain locations on the scale). As 
the field study is still part of the development process, one might choose to 
formulate extra items that cover that part of the trait level.

When the distances between the items on the ‘ability’ scale are about 
equal, the sum-scores of the instrument can be considered to be an inter-
val scale. By calculating sum-scores of the RDQ items, we assume that the 
distance from one item to the other is the same. We can see in Figure 4.3 
though that this is not the case. If there is a scarceness of items on some 
parts of the range, this means that if the ability of patients changes over this 
range of ability, the sum-score of the RDQ will hardly change. If the ability 
of a patient changes from θ = 0 to θ =Â€–2, the RDQ sum-score will probably 
change a lot, because, as can be seen in Figure 4.3, a large number of items 
probably change from 0 to 1 in this range. So, if patient trait levels change 
from 0 toÂ€–2 due to therapy (i.e. they become less disabled), their probability 
that they will answer yes on these items (meaning have difficulty with these 
items) changes from a very high probability to a very low probability. IRT 
fans claim that only IRT measurements, and those preferably based on the 
Rasch model, are real measurements, with the best estimate of the trait level 
(Wright and Linacre, 1989). However, the correlation between CTT-based 
and IRT-based scores is usually far above 0.95.
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With IRT it is possible to make an overview of the items and the population 
depicted at the same trait level. Figure 4.4 shows such a graph for the Neck 
Disability Index, which has been evaluated with Rasch analysis, using the par-
tial credit model, by Van der Velde et al. (2009). The Neck Disability Index is a 
10-item instrument that can be used to assess how neck pain affects the patient’s 
ability to manage everyday activities, such as personal care, lifting, concentra-
tion, sleeping and work. The response options range from 0 (indicating ‘no 
trouble’) to 5 (indicating ‘can’t do, or heavily impaired’). Of the 10 items, eight 
items appeared to form a unidimensional scale (Van der Velde et al., 2009).

The upper part of Figure 4.4 shows the distribution of the population. The 
population does not seem to be greatly affected by neck pain, because the 
majority of patients’ scores do not experience much difficulty with the items.

The lower part of Figure 4.4 shows the location of items on the trait level, 
using the partial credit model. As each item has six response classes, there 
are five difficulty parameters (thresholds) per item. The first difficulty par-
ameter of an item represents the point at the trait level at which the prob-
ability of scoring 1 is higher than the probability of scoring 0. The second 
difficulty parameter represents the point at the trait level at which the prob-
ability of scoring 2 is higher than the probability of scoring 1, etc. For these 
eight items, a total of 40 difficulty parameters is presented.
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Figure 4.4	 Distribution of subjects and item difficulties on the eight-item Neck Pain Disability 
Index on a logit scale. Van der Velde et al. (2009), with permission.
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In Figure 4.4, the difficulty parameters of the items are nicely spread over 
the trait level, with a few items on the left-hand side of the trait level (repre-
senting difficult items) and only one difficulty parameter with a θ above 3.5 
(representing very easy items). In the development phase, it is very useful 
to make such a figure, because it clearly shows whether there are sufficient 
items at the locations where most of the patients are. When there are a lot of 
patients on locations of the scale where there are insufficient items, this is a 
sign that more items should be generated in this range of the scale. This can 
easily be done in the developmental phase of a questionnaire.

4.6.3â•‡ Floor and ceiling effects
Sparseness of items is often observed at the upper and lower end of a scale. 
This may cause floor and ceiling effects. However, the adequacy of the dis-
tribution of the items over the scale is dependent on the distribution of the 
population over the trait level. When there are hardly any patients with 
scores at the ends of the scale, then not many items are needed there; how-
ever, when a large proportion of the patients is found at either the higher 
or the lower end of the scale, then more items are needed to discriminate 
between these patients. Graphs of the distribution of items and the distribu-
tion of the population on the same trait axis, as in Figure 4.4, give the infor-
mation needed to assess floor or ceiling effects. Floor and ceiling effects can 
occur if more than 15% of the patients achieve the lowest or highest possible 
score, respectively (McHorney and Tarlov, 1995).

By generating extra items, floor and ceiling effects can be prevented in the 
developmental phase of measurement instruments. However, floor and ceil-
ing effects often occur when existing measurements are applied to another 
population, which is less or more severely diseased than the population for 
which the instrument was originally developed. As we will see in Chapters 
7 and 8, floor and ceiling effects also have consequences for the responsive-
ness and interpretability of a measurement instrument.

4.7â•‡ Field-testing as part of a clinical study

Field-testing is definitely part of the developmental phase. Thus, if the meas-
urement instrument does not meet certain requirements in this field test, it 
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can still be adapted. Ideally, this process of evaluation and adaptation should 
be completed before an instrument is applied in clinical research or practice. 
However, there is usually insufficient time and funds for proper field-testing 
and the further adaptation and re-evaluation of a measurement instrument. 
What often happens is that it will be further evaluated during use. This has 
some serious drawbacks. Researchers who evaluate the measurement instru-
ment alongside an empirical study will often be reluctant to conclude that it 
is not performing well, because this invalidates the conclusions of their own 
research. They might also be reluctant to propose changes to the measurement 
instrument, because they realize that this will lead to a different version than 
the one used in their study. And, of course, the decision to delete some items is 
easier to make than the decision to add new items. They would only propose to 
adapt the instrument, if it is performing really badly. In summary, if a measure-
ment instrument is evaluated alongside another study, researchers are usually 
less critical, and the threshold for adaptation of the instrument will be higher.

The instrument is often published in too early a stage; sometimes even 
immediately after pilot-testing. When further adaptations are necessary, 
either after field-testing or during further evaluation, different versions 
of the instruments will appear, thus adding to the abundance of existing 
measurement instruments. Therefore, journal editors should be reluctant 
to accept a publication concerning a measurement instrument that is not 
evaluated as satisfactory by its developers.

4.8â•‡ Summary

Developing a measurement instrument is an iterative process in which the 
creative activity of development is alternated with thorough evaluation. After 
the instrument has been found to be performing satisfactorily with regard to 
comprehensibility, relevance and acceptability during pilot-testing, it should 
be subjected to field-testing. The aim of field-testing is item reduction, exam-
ination of the dimensionality, and then deciding on the definitive selection 
of items per dimension. The first step is to examine the distribution of scores 
for each item. Items with too many missing values and items over which 
there is a too homogeneous distribution of the study population could be 
deleted. For a formative model, the level of endorsement and experienced 
importance of items form the basis of the decision about which items are 
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retained and which items are deleted from the instrument. For reflective 
models, FA is indicated as the basis on which to decide on the number of 
relevant dimensions (scales). Items that do not belong to any of these scales 
can be deleted. After FA, the scales are further optimized. Some scales may 
need extra items, but this step is usually aimed at further item reduction. 
Cronbach’s alpha can be used to reduce the number of items, while main-
taining an acceptable internal consistency. Furthermore, it is important to 
consider the distribution of the items over the scale in relation to its pur-
pose:Â€discriminating patients on all ranges of the scale or at certain loca-
tions, but also in relation to the distribution of the population over the trait 
level. This can be performed with CTT techniques, but IRT is a more power-
ful method with which to examine the item functioning within a scale.

Assignments

1.â•‡ Methods of item selection
In Chapter 3, Assignment 3 concerned the paper by Juniper et al. (1997) on 
the development of the Asthma Quality of Life Questionnaire (AQLQ). This 
questionnaire aims to assess the impact of symptoms and other aspects of the 
disease on the patient’s life. For the development of this questionnaire, Juniper 
et al. (1997) departed from 152 items that are, as they define in the abstract 
of their paper, ‘potentially troublesome to patients with asthma’. They com-
pared the impact method (see Section 4.3) with FA (labelled as a psychometric 
method by the authors) for the selection of relevant items for the AQLQ.

(a)	 Explain the elementary difference between item selection via FA and via 
the impact method.

(b)	 There are a number of items that would have been included in the ques-
tionnaire if FA had been used, but not using the impact method, and 
vice versa. An example of an item selected by the impact method, and 
not by FA is:Â€ ‘how often during the past 2 weeks did you experience 
asthma symptoms as a result of being exposed to cigarette smoke?’. An 
example of an item selected by FA, and not by the impact method is 
‘feeling irritable’. Explain why these items were selected by one specific 
method and not by the other method.

(c)	 How could one make use of both methods?
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2.â•‡ Interpretation of items in a factor analysis
This assignment is based on the example of the physical workload ques-
tionnaire, described in Sections 4.4 and 4.5. In Table 4.4, items 2 and 3 have 
strong negative factor loadings.

(a)	 Explain why items 2 and 3 (‘sitting’ and ‘video display unit work’) load 
on the same factor as items 1 and 4 (standing and walking).

(b)	 We saw in Section 4.5.2 that items 2 and 3 were the first items to be 
deleted when trying to improve Cronbach’s alpha. Explain why that 
would be the case.

(c)	 How can these negative factor loadings be avoided?
(d)	 Can you explain why item 19 (uncomfortable posture) loads on two fac-

tors? Is it appropriate to keep item 19 in the questionnaire? What are the 
consequences?

3.â•‡ Factor analyses of the Graves’ ophthalmopathy quality of life questionnaire
Graves’ ophthalmopathy (GO), associated with Graves’ thyroid disease, is an 
incapacitating eye disease, causing visual problems, which can have an impact 
on daily functioning and well being, and psychological burden because of 
the progressive disfigurement of the eyes. Terwee et al. (1998) developed a 
disease-specific health-related quality of life questionnaire for patients with 
GO and called it GO-QOL. For the development of the GO-QOL question-
naire, items were selected from other questionnaires on the impact of visual 
impairments and from open-ended questionnaires completed by 24 patients 
with GO. In this way, 16 items were formulated.

For a complete UK version of GO-QOL, see www.clinimetrics.nl.
Terwee et al. (1998) performed PCA on a data set containing the data 

of 70 patients on these 16 items. The response categories were ‘yes, ser-
iously limited’, ‘yes, a little limited’ and ‘no, not at all limited’ for items about 
impairments in daily functioning. For items on psychosocial consequences 
of the changed appearance, the response options were ‘yes, very much so’, 
‘yes, a little’ and ‘no, not at all’. For a complete UK version of the GO-QOL 
and the data set of Terwee et al. (1998) see www.clinimetrics.nl.

(a)	 Make a correlation matrix of the items. Are there items that you would 
delete before starting FA?
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(b)	 Perform PCA, following the steps described in Sections 4.4.2 and 4.4.3.
(c)	 How many factors would you distinguish?
(d)	 Perform PCA forcing a two-factor model and comment on the 

interpretation.

4.â•‡ Cronbach’s alpha:Â€Graves’ ophthalmopathy quality of life questionnaire

(a)	 Calculate Cronbach’s alpha for both subscales found in Assignment 3. 
What do these values mean?

(b)	 Calculate Cronbach’s alpha for the total of 16 items. How should this 
value be interpreted?

(c)	 Try to shorten the subscales as much as possible, while keeping 
Cronbach’s alpha above 0.80.

(d)	 Can you give a reason why the authors did not reduce the scales?
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5

Reliability

5.1â•‡ Introduction

An essential requirement of all measurements in clinical practice and research 
is that they are reliable. Reliability is defined as ‘the degree to which the meas-
urement is free from measurement error’ (Mokkink et al., 2010a). Its import-
ance often remains unrecognized until repeated measurements are performed. 
To give a few examples of reliability issues:Â€radiologists want to know whether 
their colleagues interpret X-rays or specific scans in the same way as they do, 
or whether they themselves would give the same rating if they had to assess 
the same X-ray twice. These are called the inter-rater and the intra-rater reli-
ability, respectively. Repeated measurements of fasting blood glucose levels in 
patients with diabetes may differ due to day-to-day variation or to the instru-
ments used to determine the blood glucose level. These sources of variation 
play a role in test–retest reliability. In a pilot study, we are interested in the 
extent of agreement between two physiotherapists who assess the range of 
movement in a shoulder, so that we can decide whether or not their ratings 
can be used interchangeably in the main study. The findings of such perform-
ance tests may differ for several reasons. For example, patients may perform 
the second test differently because of their experience with the first test, the 
physiotherapists may score the same performance differently or the instruc-
tions given by one physiotherapist may motivate the patients more than the 
instructions given by the other physiotherapist.

So, repeated measurements may display variation arising from several 
sources:Â€ measurement instrument; persons performing the measurement; 
patients undergoing the measurements; or circumstances under which 
the measurements are taken. Reliability is at stake in all these variations in 
measurements.
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In addition to the general definition (i.e. that reliability is ‘the degree 
to which the measurement is free from measurement error’), there is an 
extended definition. In full this is ‘the extent to which scores for patients who 
have not changed are the same for repeated measurement under several con-
ditions:Â€e.g. using different sets of items from the same multi-item measure-
ment instrument (internal consistency); over time (test–retest); by different 
persons on the same occasion (inter-rater); or by the same persons (i.e. raters 
or responders) on different occasions (intra-rater)’ (Mokkink etÂ€al., 2010a). 
Note that internal consistency, next to reliability and measurement error, is 
considered an aspect of reliability (see COSMIN taxonomy in Figure 1.1).

In other textbooks and articles on reliability a variety of terms are used. 
To list a few:Â€reproducibility, repeatability, precision, variability, consistency, 
concordance, dependability, stability, and agreement. In this book, we will 
use the terms reliability and measurement error (see Figure 1.1).

At the beginning of this chapter we want to clear up the long-standing 
misconception that subjective measurements are less reliable than object-
ive measurements, by referring to a recent overview published by Hahn 
et al. (2007), who summarized the reliability of a large number of clinical 
measurements. It appeared that among all kinds of measurements, such as 
tumour characteristics, classification of vital signs and quality of life meas-
urements, there are instruments with high, moderate and poor reliabil-
ity. As we will see in Section 5.4.1, the fact that measurement instruments 
often contain multiple items to assess subjective constructs increases their 
reliability.

We continue this chapter by presenting an example and explaining the 
concept of reliability. Subsequently, different parameters to assess reliabil-
ity and measurement error will be presented, illustrated with data from the 
example. We will then discuss essential aspects of the design of a simple reli-
ability study, and elaborate further on more complex designs. We will also 
explain why the internal consistency parameter Cronbach’s alpha, that we 
already came across in Chapter 4, can be considered as a reliability param-
eter. After that, we will explain how measurement error and reliability can 
be assessed with item response theory (IRT) analysis. As reliability concerns 
the anticipation, assessment and control of sources of variation, last but 
not least, we will give some suggestions on how to anticipate measurement 
errors and how to improve reliability.
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5.2â•‡ Example

This example is based on a reliability study carried out by De Winter et al. 
(2004) in 155 patients with shoulder complaints. Two experienced physi-
otherapists, whom we will call Mary and Peter, independently measured 
the range of movement of passive glenohumeral abduction of the shoulder 
joint with a Cybex Electronical Digit Inclinometer 320 (EDI). Both physi-
otherapists measured the shoulder of each patient once. Within 1 hour the 
second physiotherapist repeated the measurements. The sequence of the 
physiotherapists was randomly allocated. In this chapter, we use data from 
50 patients and, for educational purposes, we deliberately introduce a sys-
tematic difference of about 5° between Mary and Peter. This data set can 
be found on the website:Â€www.clinimetrics.nl, accompanied by instructions 
and syntaxes. Table 5.1 presents the values for some of the patients in a ran-
domly selected sample of 50.

As is often done, the researchers started by calculating a Pearson’s correl-
ation coefficient (Pearson’s r) to find out whether the scores of the two physi-
otherapists correlate with each other. They found a Pearson’s r of 0.815 for 
this data set. They also performed a paired t-test to find out whether there 
are differences between Mary and Peter’s scores. We see that, on average, 
Mary scores 5.94° higher than Peter (circled in Output 5.1). We will take up 
these results again in Sections 5.4.1 and 5.4.2.2.

5.3â•‡ The concept of reliability

A measurement is seldom perfect. This is true for all measurements, 
whether direct or indirect, whether based on a reflective or on a formative 
model. Measurements performed by a doctor (e.g. assessing a patient’s 
blood pressure) often do not represent the ‘true’ score. ‘True’ in this con-
text means the average score that would be obtained if the measurements 
were performed an infinite number of times. It refers to the consistency 
of the score, and not to its validity (Streiner and Norman, 2008). The 
observed score of a measurement can be represented by the following 
formula:

Y = η + ε,
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Table 5.1â•‡ Mary and Peter’s scores for range of movement for 50 patients

Patient code Mary’s score Peter’s score

1 88 90
2 57 45
3 82 68
4 59 53
5 75 80
6 70 45
7 68 54
8 63 58
9 78 68
10 69 61
11 60 69
. . .
. . .
. . .
48 40 19
49 66 78
50 68 70

Output 5.1â•‡ Output of the paired t-test comparing Mary and Peter’s scores

Paired samples statistics

Mean N SD
Std. error 
mean

Pair Mary’s score 68.300 50 17.860 2.526
Peter’s score 62.360 16.318 2.308

Paired samples test

Paired differences

Std. 
error 
mean

95% CI of the 
difference Sig.  

(2-tailed)Mean SD Lower Upper t df

Pair Mary–
Peter 

5.940 10.501 1.485 2.956 8.924 4.000 49 .000
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where Y represents the observed score, η (Greek letter eta) is the true score 
of the patient, and ε is the error term of the measurement. We have seen 
this formula before in Section 2.5.1 and know that it is the basic formula 
of the classical test theory (CTT). Each observed score can be subdivided 
into a true score (η) and an error term ε, and this applies to all meas-
urements:Â€not only indirect measurements (i.e. multi-item measurement 
instruments to estimate an unobservable construct (η)), but also direct 
measurements, such as blood pressure. However, η and ε can only be dis-
entangled when there are repeated measurements. In that case, the for-
mula becomes:

Yi = η + εi,� (5.1)

where the subscript i indicates the repeated measurements, performed either 
by different raters, on different measurement occasions, under different cir-
cumstances, or with different items, as we saw in Chapter 2. We stated in 
Section 2.5.1 that the assumptions in the CTT are that the error terms are 
uncorrelated with the true score, and are also uncorrelated with each other. 
Hence, the variances of the observed scores can be written as

σâ•›2(Yi) = σâ•›2(η) + σâ•›2(εi).� (5.2)

The term σâ•›2(Yi) denotes total variance, which can be subdivided into true 
variance σâ•›2(η) and error variance σâ•›2(εi). An additional assumption is 
that error variances σâ•›2(εi) are constant for every repetition i. This implies 
that σâ•›2(Yi) is also constant. Denoting the observed variances and error 
variances as σâ•›2(Y) and σâ•›2(ε), respectively, we can rewrite Formula 5.2 as 
follows:

σâ•›2(Y) = σâ•›2(η) + σâ•›2(ε).

This formula holds for each repeated measurement i. In the remainder of 
this chapter the error variance σâ•›2(ε) will be discussed several times. To make 
sure that it will not be confused with many other variance terms, from now 
on we will write σâ•›2error to indicate the error variance. We will also replace 
σâ•›2(η) with the notation σâ•›2p because the constructs we are interested in are 
usually measured in persons or patients. If we now apply the COSMIN def-
inition of the measurement property reliability (Mokkink et al., 2010a) as 
the proportion of the total variance in the measurements (σâ•›2y), which is due 
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to ‘true’ differences between the patients (σâ•›2p), the reliability parameter (Rel) 
can be represented by

Rel = =
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(5.3)

A reliability parameter relates the measurement error to the variability 
between patients, as shown in Formula 5.3. In other words, the reliability 
parameter expresses how well patients can be distinguished from each other 
despite the presence of measurement error. From this formula, we can also 
calculate the standard error of measurement (SEM) as a parameter of meas-
urement error, which equals √σâ•›2errorâ†œ.

As shown in Formula 5.3, reliability and measurement error are related 
concepts, but this does not mean that they represent the same concept. We 
can illustrate the distinction between reliability and measurement error 
through the example of the two physiotherapists (Mary and Peter) per-
forming measurements of the range of shoulder movement in the same 
patients. Figure 5.1 shows scores for five patients, each dot representing a 
patient. For three different situations, the parameters of reliability (Rel) and 
measurement error (expressed as SEM) are presented. The measurement 
error is reflected by how far the dots are from the 45° line. The between-
patient variation (expressed as SD) is reflected by the spread of values along 
the 45° line.

Reliability parameters range in value from 0 (totally unreliable) to 1 (per-
fect reliability). If measurement error is small in comparison with variabil-
ity between patients, the reliability parameter approaches 1. In situation A 
in Figure 5.1, variation between patients is high and the measurement error 
is low. This means that discrimination between patients is scarcely affected 
by measurement error, and therefore the reliability parameter is high. In 
situation B, measurement error is as low as in situation A, but now variation 
between the five patients is much smaller, which results in a lower value 
of the reliability parameter. In this situation, the sample is more homo-
geneous. If patients have almost the same value it is hard to distinguish 
between them, and even a small measurement error hampers the distinc-
tion of these patients. In situation C, there is considerable measurement 
error (i.e. the dots are farther from the 45° line than in situations A and B), 
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but reliability is still high. This is due to the greater variation among the 
patients in situation C (i.e. a more heterogeneous sample), and thus meas-
urement error is small in relation to variation between patients. In other 
words, in this situation measurement error does not obscure differences 
between patients.

This example not only shows the distinction between reliability and 
measurement error. It also emphasizes that reliability is a characteristic of 
an instrument used in a population, and not just of an instrument.

Now that we have explained the relationship between reliability and 
measurement error, we will present parameters to assess reliability and 
parameters to assess measurement error. Our example concerns inter-
rater reliability, but all the parameters also apply to intra-rater and 
test–retest analysis. Parameters for continuous variables will be pre-
sented in Section 5.4, followed by parameters for categorical variables in 
SectionÂ€5.5.
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Figure 5.1	 Range of movement for five patients, assessed by Mary and Peter.  
Rel, reliability; SEM, standard error of measurement; SD, standard deviation.
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5.4â•‡ Parameters for continuous variables

5.4.1â•‡ Parameters of reliability for continuous variables
We continue with our example, the range of shoulder movement among 50 
patients, assessed by physiotherapists Mary and Peter. First, we plot Mary’s 
scores against Peter’s for each of the 50 patients (Figure 5.2). This plot imme-
diately reveals the similarity of Mary’s and Peter’s scores. If reliability were 
perfect, we would expect all the dots to be on the 45° line. This plot also 
shows whether there are any outliers, which might indicate false notations 
or other errors. Should we delete outliers? No, because in reality such errors 
also occur. Moreover, outliers may give information about difficulties with 
measurement read-outs or interpretation of the scales.

5.4.1.1â•‡ Intraclass correlation coefficients for single measurements
In this data set, the first reliability parameter we will determine is the intra-
class correlation coefficient (ICC) (Shrout and Fleiss, 1979; McGraw and 
Wong, 1996). There are several ICC formulas, all of which are variations on 
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Figure 5.2	 Mary’s scores versus Peter’s scores for the range of movement of 50 patients.
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the basic formula for a reliability parameter, as presented in Formula 5.3. 
All ICC formulas consist of a ratio of variances. Let us first focus on vari-
ance components. Variance components can be obtained through analysis 
of variance (ANOVA), in which the range of movement is the dependent 
variable and the patients and raters (in this example, physiotherapists) are 
considered random factors. The syntax can be found on the website (www.
clinimetrics.nl). From this ANOVA, three variance components, namely 
σâ•›2p, σâ•›2o and σâ•›2residual can be obtained (Table 5.2):Â€σâ•›2p represents the variance of 
the patients (i.e. the systematic differences between the ‘true’ scores of the 
patients), σâ•›2o represents the variance due to systematic differences between 
the therapists, and σâ•›2residual represents the random error variance. The residual 
variance component (σâ•›2residual) consists of the interaction of the two factors, 
patients and raters, in addition to some random error. As we cannot disen-
tangle the interaction and random variance any further, we simply use the 
term ‘residual variance’.

We start with an ICC formula, which contains all the variance compo-
nents mentioned above:

ICC p

p o residual

=
+ +

σ
σ σ σ

2

2 2 2
.

The σâ•›2o component requires more attention. One important question is 
whether or not this variance due to systematic differences between the phys-
iotherapists (or between time points in the case of test–retest) is part of the 
measurement error. The answer is not straightforward:Â€ it depends on the 
situation. Suppose we are performing a pilot study to assess the inter-rater 
variability of Mary and Peter. As they are the potential researchers for the 

Table 5.2â•‡ Variance components in the range of movement example

Variance component Meaning

σâ•›p2 Variance due to systematic differences between ‘true’ 
scores of patients (patients to be distinguished)

σâ•›o2 Variance due to systematic differences between observers 
(i.e. physiotherapists)

σâ•›2residual Residual variance (i.e. random error variance), partly due 
to the unique combination of patients (p) and observers (o)
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main study, we are interested in how much their scores for the same patients 
will differ. Therefore, we compare their mean values, and for example dis-
cover that, on average, Mary scores 5.94° higher than Peter. We can adjust 
for this in the main study by subtracting 5.94° from Mary’s scores. Then, 
only random errors remain, and σâ•›2o is not considered to be part of the meas-
urement error. In this pilot study we are interested only in Mary and Peter, 
thus the physiotherapists are considered ‘fixed’. However, if our aim is to 
assess how much physiotherapists in general differ in their scores, then we 
consider Mary and Peter to be representatives, i.e. a random sample of all 
possible physiotherapists. In that case, we want to generalize the results to all 
physiotherapists, and the physiotherapists are considered as a random fac-
tor. In this situation, σâ•›2o is part of the measurement error, because if we had 
taken physiotherapists other than Mary and Peter, systematic differences 
would also have occurred. In this case, we cannot adjust for the systematic 
differences, and therefore they are part of the measurement error.

So, if the raters are considered to be a random sample of all possible 
raters, then variance due to systematic differences between raters is ‘usu-
ally’ included in the error variance. We say ‘usually’, because it may be pos-
sible that we are not interested in absolute agreement between the raters, but 
only in consistency (i.e. ranking). To illustrate the difference, let us draw a 
parallel with education. When teachers mark students’ tests to determine 
whether or not they have passed their exams, absolute agreement should 
be sought. The teachers should agree about whether the marks are below 
or above the cut-off point for passing the exam. However, if they mark the 
tests in order to identify the 10 best students, only consistency is relevant. 
In that case, we are only interested in whether the teachers rank students in 
the same order. In medicine, we are mainly interested in absolute agreement, 
because we want raters to draw the same conclusions about the severity of 
a disease or other characteristics. We are rarely interested in the ranking of 
patients. An example of the latter would be if we have to assign priorities 
to people on a waiting list for kidney transplantation, and the most severe 
patients should be highest on the list. Then, systematic differences are not of 
interest, because only the ranking is important.

As we have said before, there are several ICC formulas. For example, if 
we are interested in consistency, only the residual variance is considered as 
error variance. This ICC is called ICCconsistencyâ†œ. If we are interested in absolute 
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agreement, variance due to systematic difference is part of the error vari-
ance, and we use the formula for ICCagreement. In that case, the error variance 
consists of the residual variance plus variance due to systematic differences.

The formulas for ICCagreement and ICCconsistency are as follows:

ICCagreement
p

p o residual
residual=

+ +
+=

σ
σ σσ

σ σ
2

2 2 o
σ 2

2
2 2, error

â•›
,
�

(5.4)

ICCconsistency
p

p residual
residual=

+
=

σ
σ σ

σ σ
2

2 2
2 2, error .

�
(5.5)

In ICCagreement the variance for the systematic differences between the raters 
(σâ•›2o) is part of the error variance, and in ICCconsistency σâ•›2o is not included in the 
error variance.

We now take a look at how these ICCs can be calculated in SPSS. We have 
already observed that ANOVA provides the values of the necessary variance 
components. In this ANOVA the range of movement is the dependent vari-
able and the patients and raters (in this example the physiotherapists) are 
considered to be random factors. The syntax can be found on the website 
(www.clinimetrics.nl).

Output 5.2 shows the results of the SPSS VARCOMP analysis. The 
VARCOMP output does not show the value of the ICC, but it provides the 
elements from which ICC is built. The advantage is that this analysis gives 

Output 5.2â•‡ Output of VARCOMP analysis of Mary and  
Peter’s scores for the range of movement of 50 patients

Variance estimates

Component Estimate

Var(p) 237.502
Var(o) 16.539
Var(residual) 55.131
Var(total)a 309.172

Dependent variable:Â€range of movement.
Method:Â€ANOVA (Type III Sum of Squares).
aâ•›Last row of this table is not provided by SPSS output.
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insight into the magnitude of the separate sources of variation. Calculating 
ICCagreement and ICCconsistency by hand gives ICCagreement of 237.502/(237.502 
+ 16.539 + 55.131) = 0.768, and ICCconsistency amounts to 237.502/(237.502 
+ 55.131) = 0.812. As can be seen directly from Formulas 5.4 and 5.5, 
ICCagreement will always be smaller than ICCconsistency. The values of ICCagreement 
and ICCconsistency will only coincide if there are no systematic differences 
between the raters. Using the VARCOMP analysis, the output readily shows 
the magnitude of the random error and systematic error in relation to vari-
ation of the patients. Expressed as proportions, the patients account for 
0.768 (237.502/309.172) to the total variance, the systematic error for 0.053 
(16.539/309.172), and the random error accounts for 0.178 (55.131/309.172). 
In this example, the systematic error is about 23% (0.053/(0.053 + 0.178)) of 
the total error variance.

Another way to calculate ICCs in SPSS is by using the option ‘scale ana-
lysis’ and subsequently ‘reliability analysis’. Here we choose under ICC the 
option ‘two-way analysis’, and then we have to decide about agreement or 
consistency. In Output 5.3, we have to look at the single measures ICC to 
obtain the correct ICC value (circled in the output). The meaning of average 
measures ICC will be explained in Section 5.4.1.2.

Using this method to calculate ICC, we cannot obtain the values of the 
separate variance components on which the ICC formula is based. Output 
5.4 shows the value of ICCconsistencyâ†œ. By comparing ICCagreement with ICCconsistency 
we can deduce whether there is a systematic error. However, its magnitude is 
difficult to infer. By considering ICCconsistencyâ†œ, we only know the relative value 
of the error variance to the between-patient variance, but we do not know 
the actual values. For an overview of methods to calculate the ICC in SPSS, 
we refer to the website www.clinimetrics.nl.

5.4.1.2â•‡ Intraclass correlation coefficients for averaged measurements
Outputs 5.3 and 5.4 also show an ICC for average measures. First, we 
will explain how this ICC should be interpreted and then how it can be 
calculated.

In medicine, it is well known that a patient’s blood pressure measurements 
vary a lot, either because it fluctuates, or because of the way in which it is 
measured by the clinician. It is common practice to measure a patient’s blood 
pressure three times, and average the results of the three measurements. 
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This practice is based on the knowledge that repeating the measurements 
and averaging the results gives a more reliable result than a single measure-
ment. The ICC for average measures applies to the situation where we are 
interested in the reliability of mean values of multiple measurements. In the 
example of shoulder movements, an ICCconsistency of 0.896 (Output 5.4) holds 
for the situation that the range of movement is measured twice and aver-
aged scores are used. Thus, when in clinical practice, a single measurement 
is used to assess the range of shoulder movement, as is current practice, the 

Output 5.3â•‡ Output of reliability analysis to obtain ICCagreement for Mary and Peter’s scores

95% Confidence 
interval F test with true value 0

Intraclass 
correlationa

Lower 
bound

Upper 
bound Value df1 df2 Sig

Single measures 0.768 0.530 0.879 9.616 49 49 0.000
Average measures 0.869 0.682 0.937 9.616 49 49 0.000

Two-way random effects model where both people effects and measures (=â•›raters) effects are 
random.
aâ•‡ Type A (=â•›agreement) intraclass correlation coefficients using an absolute agreement definition.

Output 5.4â•‡ Output of reliability analysis to obtain ICCconsistency for Mary and Peter’s scores

95% Confidence 
interval F test with true value 0

Intraclass 
correlationa

Lower 
bound

Upper 
bound Value df1 df2 Sig

Single measures 0.812 0.690 0.889 9.616 49 49 0.000
Average measures 0.896 0.817 0.941 9.616 49 49 0.000

Two-way random effects model where both people effects and measures (=â•›raters) effects are 
random.
aâ•›�Type C (=â•›consistency) intraclass correlation coefficients using a consistency definitionÂ€– the 
between measure (=â•›between-rater) variance is excluded from the denominator variance.
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reliability of the obtained value is 0.812. When the range of shoulder move-
ment is assessed by two different physiotherapists and their mean value is 
used in clinical practice, the reliability of that value would be 0.896.

In calculating this average measures ICC, we use a very important charac-
teristic of the CTT. Recall our Formula 5.1 in Section 5.3:

Yi = η + εi.� (5.1)

Suppose we have k measurements, then the formula for the sum of Ys (Y+) is

Y Y kηi

k

i
i

k

+ ≡ = +∑ ∑
i= =1 1

ε

and is accompanied by the following variance:

σâ•›2(Y+) = k2σâ•›2(η) + kσâ•›2(ε).

As in Section 5.3, we replace σâ•›2(ε) by σâ•›2error and σâ•›2(η) by σâ•›2p; then the reliabil-
ity parameter can be written as

Rel =
+

=
+

k

k

p p

p
residual

2 2

2 2 2

2

2
2

σ
k kp errorσ σ

σ

σ σ
.

This formula shows us that when we average several measurements, the 
error variance can be divided by the number of measurements over which 
the average is taken.

For our example of shoulder movements ICCconsistency for scores averaged 
over two physiotherapists is

ICCconsistency
p

p
error

p

p
residual

=
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=
+

=
σ

σ σ
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σ σ

2

2
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2

2
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We have seen in Formula 5.4 that the component σâ•›2â•›o is part of the error 
variance in ICCagreement:

ICCagreement
p

p
error

p

p
o residual

=
+

=
+ +

=
σ

σ σ
σ

σ σ σ

2

2
2

2

2
2 2

2 2

237 50. 22

237 502 16 539 55 131
2

0 869
. . . . .

+ + =

 

 

 

 



Reliability110

Hence, we always get a more reliable measure when we take the average of 
scores, because the measurement error becomes smaller.

5.4.1.3â•‡ Pearson’s r
At the beginning of this chapter, we calculated Pearson’s r to see whether 
Mary’s and Peter’s scores were correlated. If we compare the value of 
the Pearson’s r with the ICCagreement (0.815 versus 0.768), we see that the 
Pearson’s r is higher. Pearson’s r is not a very stringent parameter to assess 
reliability, as is shown in Figure 5.3. If Mary’s and Peter’s scores are exactly 
on the same (line A), Pearson’s r, ICCagreement and ICCconsistency will all be 1. 
ICCconsistency and Pearson’s r will also be 1 if Mary’s scores (y-axis) are 5° 
lower than Peter’s scores (line B). This means that these two parameters do 
not take systematic errors into account. Pearson’s r will even be 1 if Mary’s 
scores are twice as low as Peter’s scores (line C). In that case, neither ICCs 
will equal 1. Although the ranking of persons is the same, ICCconsistency devi-
ates from 1, because the variances of Peter’s scores are larger than of Mary’s 
scores. So, Pearson’s r does not require a 45° line. However, if there are only 
random errors, the Pearson’s r will give a good indication of the reliabil-
ity. As could be expected, in our example Pearson’s r is about equal to the 
ICCconsistency (0.815 and 0.812, respectively). Therefore, because Pearson’s r 
is less critical, we recommend the ICC as a reliability parameter for con-
tinuous variables.

ICCA,C = 1, r = 1

ICCA ≠ 1, ICCC = 1, r = 1

ICCA,C ≠ 1, r = 1

Mary’s
score 

Peter’s score

A
B

C

Figure 5.3	 Values of Pearson’s r and ICC for different relationships between Mary and Peter’s 
scores.
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5.4.2â•‡ Parameters of measurement error for continuous variables

5.4.2.1â•‡ Standard error of measurement
In Section 5.3, we introduced the SEM as a parameter of measurement error. 
The SEM is a measure of how far apart the outcomes of repeated meas-
urements are; it is the SD around a single measurement. For example, if a 
patient’s blood pressure is measured 50 consecutive times, and the SD of 
these values is calculated, then this SD represents the SEM. Three methods 
can be used to obtain the SEM value.

First, the SEM value can be derived from the error variance (σâ•›2error) in the 
ICC formula. The general formula is

SEM = √ σâ•›2errorâ•›.

As we have seen, σâ•›2error may or may not include the systematic error (see 
Section 5.4.1.1). Therefore, as with the ICC, we have agreement and consist-
ency versions of the SEM:

SEMagreement = √(σâ•›2o + σâ•›2residual),

SEMconsistency = √σâ•›2residual.

In our example, using data from Output 5.2, the value of SEMagreement = √ (σâ•›2o + 
σâ•›2residual) = 8.466, and SEMconsistency = √ σâ•›2residual = 7.425.
The second method that can be used to calculate the SEM is via the SD of 
the differences between the two raters (SDdifference). We seldom have so many 
repeated measurements of one patient that the SEM can be obtained from 
the SD of the patient. But often we do have two measurements of a sample 
of stable patients (e.g. because these patients are measured by two raters). 
We then take the difference of the values of the two raters, and calculate the 
mean and the SD of these differences (SDdifference). We can use this SDdifference 
to estimate the SD around a single measurement to derive SEMconsistency with 
the following formula:

SEMconsistency = SDdifference/√2 = 10.501/√2 = 7.425.� (5.6)

The √2 in the formula arises from the fact that we now use difference scores, 
and difference scores are based on two measurements. As each measure-
ment is accompanied by the measurement error, we have twice the meas-
urement error present in the variances. We know that, in general, SDs (σ) 
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are the square root of variances (σâ•›2), and therefore, the factor √2 appears 
in Formula 5.6. As SDdifference, by definition, does not include the systematic 
error, it is SEMconsistency which is obtained here.

We have doubted whether or not to describe the third method that can be 
used to calculate the SEM, because we want to warn against its use. However, 
we decided to present the formula, and explain what the fallacies are.

The formula is the original ICC formula, rewritten as follows

SEM = σy √(1Â€– ICC) = SDpooled√(1Â€– ICC).� (5.7)

In this formula, σy represents the SD of the sample in which the ICC is deter-
mined. The corresponding term in Formula 5.5 for ICCconsistency is σâ•›2yâ†œ, that 
contains the total variance, i.e. a summation of all terms in the denomin-
ator (see Formula 5.3). This formula is often misused. First, it is misused by 
researchers who want to know the SEM value, but who have not performed 
their own test–retest analysis, or intra-rater or inter-rater study. They take 
an ICC value from another study and then use Formula 5.7 to calculate an 
SEM. In this case, the population from which the ICC value is derived is 
often unknown or ignored. We saw earlier that the ICC is highly dependent 
on the heterogeneity of the population. Therefore, Formula 5.7 can only be 
used for populations with approximately the same heterogeneity (i.e. SD) as 
the population in which the ICC is calculated. If we were to apply the ICC 
found in our example to a more homogeneous population, we would obtain 
SEMs that are far too small and extremely misleading. Therefore, we dis-
courage the use of this formula. Assignment 5.3 contains an example of con-
sequences of the misuse of this formula. Secondly, some researchers insert 
Cronbach’s alpha instead of the ICC for test–retest, inter-rater or intra-rater 
reliability. Although Cronbach’s alpha is a reliability parameter, as we will 
explain in Section 5.12, it cannot replace the ICCs described above if one is 
interested in the SEM as the measurement error for test–retest, inter-rater 
or intra-rater situations (i.e. repeated measurements). The reason for this is 
that Cronbach’s alpha is based on a single measurement. Thirdly, this for-
mula applies only to SEMconsistency, because the SD to be inserted in this for-
mula can be assessed only when there are no systematic differences.

To show that Formula 5.7 leads to the same result for SEMconsistency as we 
have derived by the other methods, we take the SDpooled (see Output 5.1 for 
the SD1 of Mary’s and SD2 of Peter’s scores) as
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SD SD1
2

2
2 2 2

2
17 860 16 318

2
17 106+ = + =. . .

and ICCconsistency = 0.812. This leads to SEM = SDpooled√(1Â€– ICCconsistency) = 
17.106 × √(1Â€– 0.812) = 7.417.

By using this method, keep in mind that it only holds for the population 
in which the ICC was determined. We refer to Assignment 3 for an illustra-
tion of an incorrect use of this formula.

5.4.2.2â•‡ Limits of agreement (Bland and Altman method)
Another parameter of measurement error can be found in the limits of 
agreement, proposed by Bland and Altman (1986). In Figure 5.2, Mary’s and 
Peter’s scores are plotted. Without the straight 45° line drawn in Figure 5.2 
it is very hard to see how much Mary’s and Peter’s scores deviate from each 
other and whether there are systematic differences (i.e. whether there are 
more dots on one side of the line). Bland and Altman designed a plot in 
which systematic errors can easily be seen (see Figure 5.4).

For each patient the mean of the scores assessed by Mary (M) and Peter 
(P) is plotted on the x-axis, against the difference between the scores on 
the y-axis. The output of the paired t-test analysis, as presented in Output 
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Figure 5.4	 Bland and Altman plot for Mary and Peter’s scores for the range of movement of 
50 patients.
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5.1 inÂ€Section 5.2, then provides all the relevant data to draw a Bland and 
Altman plot.

The dashed line d  ̄represents the mean systematic difference between Mary’s 
and Peter’s scores, which amounts to 5.940 (95% CI:Â€2.956 to 8.924) in our 
example (circled in Output 5.1 of the paired t-test). It appears that this mean 
difference is statistically significant. The two dotted lines above and below the 
line d ̄ represent the limits of agreement, and these are drawn at d  ̄± 1.96 × 
SDdifference. We can interpret d  ̄as the systematic error and 1.96 × SDdifference as 
the random error. Assuming that the difference scores have a normal distribu-
tion, this means that about 95% of the dots will fall between the dotted lines. 
If Mary’s and Peter’s scores differ a lot, the SD of the differences will be large 
and the lines will be further away from the line d .̄ The limits of agreement here 
areÂ€–14.642 to 26.522. As these are expressed in the units of measurement, 
clinicians and researchers have a direct indication of the size of the measure-
ment error.

We have seen in Section 5.4.2.1 that SEMconsistency = SDdifference/√2. So, the 
limits of agreement can also be written as d ̄ ± 1.96 × √2 × SEMconsistency. 
However, if there are systematic differences the limits of agreement cannot 
be transformed into SEMagreement. The reason for this is that in SEMagreement 
the systematic error is included in the error variance, while in the limits of 
agreement it is expressed in the d ̄ line. Therefore, only SEMconsistency can be 
transformed in this way.

An important assumption of the Bland and Altman method is that the 
differences between the raters do not change with increasing mean values 
(Bland and Altman, 1999). In other words, the calculated value for the limits 
of agreement holds for the whole range of measurements. This assumption 
also underlies the calculation of SEM and ICC, but in the Bland and Altman 
plot we can readily observe whether the magnitudes of differences remains 
the same over the whole range of mean values. If the SDdifference does change 
with increasing mean values, it is sometimes possible to transform the data 
in such a way that the transformed data satisfy the assumption of a constant 
SDdifference. An example of this can be found in the measurement of skin folds 
to assess the proportion of bodily fat mass. When skin folds become thicker, 
the measurement errors become larger. For an example of how such a trans-
formation works, we refer to Euser et al. (2008).
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5.4.2.3â•‡ Coefficient of variation
The coefficient of variation (CV) is another parameter of measurement error 
that medical researchers might encounter. The CV is used primarily to indi-
cate the reliability of an apparatus, when numerous measurements are per-
formed on test objects in the phase of calibration and testing. It is not used to 
assess inter-rater or intra-rater reliability or test–retest reliability in the field 
of medicine. However, because researchers in the more physical disciplines 
will encounter CV values, it is worthwhile to explain what these represent.

The CV relates the SD of repeated measurements to the mean value, as is 
shown in the following formula:

CV = SDrepeated measurements/mean.

The CV is usually multiplied by 100% and expressed as a percentage. It is 
very appropriate to calculate this parameter if the measurement error grows 
in proportion to the mean value, because a stable percentage can then be 
obtained. This is often the case in physics. Note that the CV can only be cal-
culated, or interpreted adequately, when we are using a ratio scale (i.e. there 
should be a zero point and all values should be positive).

5.5â•‡ Parameters for categorical variables

5.5.1â•‡ Parameters of reliability for categorical variables

5.5.1.1â•‡ Cohen’s kappa for nominal variables
The example we use to illustrate parameters of reliability for categor-
ical variables is the classification of precancerous states of cervical can-
cer. Screening for cervical cancer takes place by scraping cells from the 
cervix, and in case of abnormalities a biopsy (tissue sample) is taken to 
detect abnormal cells and changes in the architecture of the cervical tissue. 
Based on the biopsy, potentially precancerous lesions are classified into 
five stages:Â€no abnormalities (no dysplasia:Â€ND); three stages of dysplasia 
or cervical intraepithelial neoplasia, i.e. CIN1, CIN2, CIN3, correspond-
ing to mild, moderate and severe dysplasia, respectively; and carcinoma 
in situ (CIS). This is a typical example of an ordinal scale. However, for 
our first example we dichotomize the classes as ND, CIN1 and CIN2 on 
the one hand, requiring no further action except careful observation, and 
CIN3 and CIS on the other hand, in which case excision of the lesion takes 
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place. The result is a dichotomous scale. De Vet et al. (1992) examined 
the inter-observer variation of the scoring of cervical biopsies by different 
pathologists. The scores of two pathologists (A and B) for the biopsy sam-
ples of 93 patients are presented in Table 5.3.

Cohen’s kappa
The two pathologists (A and B) agree with each other in 75 of 93 cases, both 
observing severe abnormalities in 15 cases, and no severe abnormalities in 
60 cases. This results in a fraction of 0.806 (75 of 93) of observed agreement 
(Po). However, as is the case in an exam with multiple choice questions, a 
number of questions may be answered correctly by guessing. So, pathologist 
B would agree with pathologist A in some cases by chance, even if neither 
of them looked at the biopsies. Cohen’s kappa is a measure that adjusts for 
the agreement that is expected by chance (Cohen, 1960). This chance agree-
ment is also called expected agreement (Pe). Statisticians know that expected 
agreement could easily be calculated by assuming statistical independence 
of the measurements, which is obtained by multiplication of the marginals. 
The sum of the upper left and the lower right cells then becomes:

Pe = × + × =25
93

23
93

68
93

70
93

0 617. .

The following reasoning may help clinicians to understand the estimation 
of the expected number of biopsies on which both pathologists classify as 
CIN3 or CIS. Pathologist B classified 27% (25 of 93) of the samples as severe. 
If he did this without even looking at the biopsies, his scores would be totally 
independent of the score of pathologist A. In that case, pathologist B would 
probably also have rated as severe 27% of the 23 cases (i.e. 6.183 cases) that 

Table 5.3â•‡ Classification of scores of pathologists A and B for 93 biopsies in two 
categories

Pathologist A 

Pathologist B CIN3 or CIS No severe abnormalities Total

CIN3 or CIS 15 10 25
No severe abnormalities 8 60 68
Total 23 70 93
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were classified as severe by pathologist A. The same holds for the 70 samples 
that were rated non-severe by pathologist A; 73% (68 of 93) of these 70 (i.e. 
51.183 cases) would be rated as non-severe by pathologist B. The number of 
chance agreements expected in all four cells are presented between brackets 
in Table 5.4.

Now we can calculate the fraction of the expected agreement (Pe), which 
amounts to a fraction of (51.183 + 6.183)/93 = 0.617. The formula for Cohen’s 
kappa is as follows:

= −
−

P P
P

o e

e 1
κ .

In the numerator, the expected agreement is subtracted from the observed 
agreement. Therefore, the denominator should also be adjusted for the 
expected agreement. Thus, kappa relates the amount of agreement that is 
observed beyond chance agreement to the amount of agreement that can 
maximally be reached beyond chance agreement.

For this example, Po = 0.806 and Pe = 0.617. Filling in the formula results 
in к = (0.806Â€– 0.617)/(1Â€– 0.617) = 0.493.

5.5.1.2â•‡ Weighted kappa for ordinal variables

Weighted kappa
In the example concerning cervical dysplasia, the pathologists actually 
assigned the 93 samples to five categories of cervical precancerous stages.

We can also calculate a kappa value for a 5 × 5 table, using the same 
methods as we did before. The observed agreement Po = (1 + 13 + 18 + 
15 + 2)/93 = 49/93 = 0.527. The expected agreement by chance can again 

Table 5.4â•‡ Classification of observed scores and expected numbers of chance (dis)
agreements (between brackets)

Pathologist A

Pathologist B CIN3 or CIS No severe abnormalities Total

CIN3 or CIS 15 (6.183) 10 (18.817) 25
No severe abnormalities 8 (16.817) 60 (51.183) 68
Total 23 70 93
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be derived from the marginals of each cell. So, for the middle cell with an 
observed number of 18, the expected number is (34 × 38)/93 = 13.892. And 
Pe = (0.022 + 5.419 + 13.892 + 8.731 + 0.215)/93 = 28.279/93 = 0.304. So, 
this amounts to a value of kappa (κ) = (PoÂ€– Pe)/(1Â€– Pe) = (0.527Â€– 0.304)/ 
(1Â€– 0.304) = 0.320. This is called an unweighted kappa value.

However, it is also possible to calculate a weighted Cohen’s kappa (Cohen, 
1968). The rationale for a weighted kappa is that misclassifications between 
adjacent categories are less serious than those between more distant categor-
ies, and that the latter should be penalized more heavily. The formula for the 
weighted kappa is

κ = −
×

×
∑

∑
1

w P

w P
ij o

ij e

ij

ij

,

where summation is taken over all cells (i, j) in Table 5.5 with row index i 
(scores of pathologist B) and column index j (scores of pathologist A), wij is 
the weight assigned to cell (i, j) and Poij

 and Peij
 are the observed and expected 

proportions of cell (i, j), respectively.
Sometimes linear weights are used, but quadratic weights are usually 

applied. The linear and quadratic weights are presented in Table 5.6.
It is laborious to calculate weighted kappa values manually. Therefore, we 

recommend a website http://faculty.vassar.edu/lowry/kappa.html that can 
be used to calculate weighted kappas. You only have to enter the numbers 
in the cross-table, and the program calculates the values for the unweighted 

Table 5.5â•‡ Classifications of scores of pathologists A and B for 93 biopsies in five categories

Pathologist A

Pathologist B CIS CIN3 CIN2 CIN1 ND Total

CIS 1 (0.022) â•‡ 0 â•‡ 0 â•‡ 0 0 â•‡ 1
CIN3 1 13 (5.419) â•‡ 9 â•‡ 1 0 24
CIN2 0 â•‡ 7 18 (13.892) â•‡ 9 0 34
CIN1 0 â•‡ 1 11 15 (8.731) 2 29
ND 0 â•‡ 0 â•‡ 0 â•‡ 3 2 (0.215) â•‡ 5
Total 2 21 38 28 4 93
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kappa, and for the weighted kappa, using linear and quadratic weights. The 
95% confidence intervals are also presented, together with a large number of 
other details. For the example above the kappa values are

unweighted kappa = 0.320 (95% CI = 0.170–0.471), and
weighted kappa with quadratic weights = 0.660 (95% CI = 0.330–0.989).

Cohen’s kappa is a reliability parameter for categorical variables. Like all reli-
ability parameters, the value of kappa depends on the heterogeneity of the 
sample. In the case of cross-tables, the heterogeneity of the sample is repre-
sented by the distribution of the marginals. An equal distribution over the 
classes represents a heterogeneous sample. A skewed distribution points to a 
more homogeneous sample (i.e. almost all patients or objects are the same). 
In a homogeneous sample it is more difficult to distinguish the patients or 
objects from each other, often resulting in low kappa values. A weighted 
kappa, using quadratic weights, equals ICCagreement (Fleiss and Cohen, 1973). 
Note, that by calculating weighted kappa, we are ignoring the fact that the 
scale is still ordinal (i.e. the distance between the classes is unknown), while 
by assigning weights we pretend that these distances are equal.

5.5.2â•‡ No parameters of measurement error for categorical variables
For ordinal and nominal levels of measurement, there is only classification and 
ordering and no units of measurement. Therefore, there are no parameters of 
measurement error that quantify the measurement error in units of measure-
ment. It can be examined, however, which percentage of the measurements are 
classified in the same categories. We call this the percentage of agreement.

Table 5.7 presents an overview of parameters of reliability and measure-
ment error for continuous and categorical variables.

Table 5.6â•‡ Linear and quadratic weights used in the calculation of weighted kappa values

Same 
category

Adjacent 
category

2 categories 
apart

3 categories 
apart

4 categories 
apart

Linear weights 0 1 2 3 â•‡ 4
Quadratic weights 0 1 4 9 16
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5.6â•‡ Interpretation of the parameters

5.6.1â•‡ Parameters of reliability

5.6.1.1â•‡ Intraclass correlation coefficient
Calculating parameters for reliability is not the end of the story; we want to 
know which values are satisfactory. The ICC values range between 0 andÂ€1. 
The ICC value approaches 1 when the error variance is negligible compared 
with the patient variance. The value approaches 0 when the error variance 
is extremely large compared with the patient variance, and this value is 
obtained in very homogeneous samples. Note that ICC = 0 when all patients 
have the same score (i.e. patient variance is 0). Typically, an ICC value of 
0.70 is considered acceptable (Nunnally and Bernstein, 1994), but values 
greater than 0.80 or even greater than 0.90 are, of course, much better. We 
have seen that the ICC is sample-dependent:Â€ patients in a heterogeneous 
population are much easier to distinguish than patients who are very similar 
with regard to the characteristic to be measured. This is not a disadvantage 
of an ICC in particular:Â€it is typical of every reliability parameter. However, 
it stresses the importance that the ICC should be determined in the popula-
tion for which the instrument will be used. In addition, by the same token, 
if one is going to use a measurement instrument and wants to know its reli-
ability, one should look for an ICC for that instrument determined in a com-
parable population.

5.6.1.2â•‡ Kappa
Kappa values range betweenÂ€–1 and 1. Kappa equals 1 when all scores are in 
the upper left cell or lower right cell of the 2 × 2 table (or, more generally, all 
scores are in cells along the diagonal of a bigger table). A kappa value of 0 

Table 5.7â•‡ Overview of parameters of reliability and measurement error for continuous and 
categorical variables

Continuous scale Ordinal scale Nominal scale

Reliability ICC ICC or weighted kappa unweighted kappa

Measurement error/
agreement

SEM or limits of 
agreement

 
% agreement

 
% agreement
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means that there is no more agreement than can be expected by chance. If the 
kappa value is negative but still close to 0, this points to less agreement than 
would be expected by chance. However, a kappa value close toÂ€–1 is usually 
caused by reversed scaling by one of the two raters. In our example concern-
ing cervical dysplasia the unweighted kappa value was 0.493. Is this kappa 
value acceptable? Figure 5.5 presents two slightly different methods that can 
be used to interpret kappa values (Landis and Koch, 1977; Fleiss, 1981). A 
value of about 0.5 is considered to be ‘moderate’ or ‘fair to good’, depending 
on which method of classification is used. Of course, when the kappa value 
is 0.77, researchers prefer to use the classification of Fleiss (1981), because 
that classifies this value as excellent. Although the differences between the 
methods may be confusing, they illustrate clearly the ambiguity and arbi-
trariness of these classifications.

As explained in Section 5.5.1, kappa values are influenced by the distribu-
tion of the marginals. Kappa values can also be influenced by the number of 
classes and by systematic differences between the raters, so a kappa value on 
its own is not very informative. Therefore, it is strongly recommended that 
the content of the cross-tables is presented, in addition to the kappa value. 
This content provides information about:

The marginal distribution:Â€a more skewed distribution (i.e. a more homo-•	
geneous population) leads to a higher fraction of chance agreement, leav-
ing less room for real agreement. Although, theoretically, the kappa value 
can still approach 1, in practice the values are usually lower.
Systematic differences:Â€ by comparing the marginal distributions of the •	
raters, one can see whether there are systematic differences between 

Interpretation of kappa values

Landis &
Koch

Fleiss
almost
perfect excellent

fair to good 

poor
slight

fair

0.75

0.40

0.2

0.4

0.6

0.8
substantial

moderate

Figure 5.5	 Classifications for interpretation of Cohen’s kappa values.
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the raters. In Tables 5.3 (2 × 2 table) and 5.5 (5 × 5 table) it can be seen 
that pathologists A and B had similar distributions over the various 
categories.

Many clinicians gain a clearer view of the amount of misclassification by 
looking at the numbers in a 2 × 2 table than by knowing the kappa value.

5.6.2â•‡ Parameters of measurement error

5.6.2.1â•‡ Standard error of measurement
Parameters of measurement error are expressed in the unit of measurement. 
Therefore, it is impossible to give general guidelines regarding what values 
are acceptable. Fortunately, such guidelines may also be less necessary than 
for reliability coefficients. If clinicians are familiar with the measurements 
in question, they have an immediate feeling as to whether the measurement 
error is small or not. For example, clinicians know what a 5 mmHg meas-
urement error in blood pressure means, or an error of 1 mmol/l in fasting 
glucose levels, and physiotherapists are familiar with the meaning of a diffe-
rence of 5° in range of movement measurements. This is the advantage of the 
parameters of measurement error:Â€they are easily interpreted by clinicians 
and researchers.

However, if we are using multi-item measurements, it is not intuitively 
clear what a certain value means. For example, the Roland–Morris Disability 
Questionnaire (RDQ) (Roland and Morris, 1983) that assesses the disabil-
ity of patients with low back pain, is scored on a 0–24-point scale. On this 
scale it is more difficult to decide whether a SEM of 3 points is acceptable. To 
enhance the interpretation of the size of the measurement error, the limits of 
agreement are often calculated, and then related to the range of the scale.

5.6.2.2â•‡ Bland and Altman method
A SEM value of 3 points leads to limits of agreement of d ̄ ± 1.96 × √2 × 3 
(see the Bland and Altman method in Section 5.4.2.2). When there are no 
systematic errors between the two raters, the value of d ̄ is 0 and the limits of 
agreement are ±8.3. Relating the limits of agreement to the range of the scale 
may give an impression of the magnitude of the measurement error. By def-
inition, 95% of the differences between repeated measurements fall between 
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the limits of agreement. If we observe, for example, a change of 5 points on 
the RDQ, there is a reasonable chance that this is due to measurement error. 
However, if we observe a change of 10 points, which is outside the limits of 
agreement, it is improbable that this is due to measurement error, and it pos-
sibly indicates a real change. Therefore, limits of agreement give informa-
tion about the smallest detectable change (i.e. change beyond measurement 
error). This will be further discussed in Chapter 8, Section 8.5.3.

As we will see in Chapter 8, which focuses on interpretation, efforts are 
made to define values for minimal important change or other measures of 
clinical relevance for measurement instruments. If such measures are avail-
able, it is clear that  measurement errors are acceptable if the smallest detect-
able change is smaller than the values for minimally important change.

5.7â•‡ Which parameter to use in which situation?

Reliability parameters assess how well patients can be distinguished from 
each other, and parameters of measurement error assess the magnitude of 
the measurement error. In clinical practice, a clinician tries to improve the 
health status of individual patients, and is thus interested in the evaluation 
of health status. In research, much attention is also paid to evaluative ques-
tions, such as ‘does the health status of patients change?’, ‘does a treatment 
work?’ or ‘is there a relevant improvement or deterioration in health?’. All 
these questions require a quantification of the measurement error, in order 
to determine whether the changes are real, and not likely to be due to meas-
urement error. Parameters of measurement error are relevant for the meas-
urements of changes in health status. In diagnostic and prognostic research, 
the aim is to distinguish between different (stages of) diseases or between 
different courses or outcomes of the disease. For these discriminative pur-
poses, reliability parameters are primarily indicated (De Vet et al., 2006).

Although parameters of measurement error are often relevant for meas-
urements in the field of medicine, only reliability parameters are presented 
in many situations. In two systematic reviews of evaluative measurement 
instruments we assessed whether reliability parameters or parameters of 
measurement error were presented (Bot et al., 2004b; De Boer et al., 2004). 
All 16 studies focusing on shoulder disability questionnaires presented 
parameters of reliability, but only six studies also reported a parameter of 
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measurement error. For 31 measurement instruments used to assess quality 
of life in visually impaired patients, a parameter of reliability was reported 
for 16 instruments, but a parameter of measurement error was reported for 
only seven instruments. As we have seen in Section 5.4.2.1, in theory, the 
SEM can be derived from the ICC formula, but this is only possible if all the 
components of the ICC formula are presented. Usually only the bare ICC 
value is provided, often with no mention at all as to which ICC formula has 
been used. We strongly recommend and promote the use of parameters of 
measurement error, or the provision of details about the variance compo-
nents underlying the ICC.

5.8â•‡ Design of simple reliability studies

Now that we have discussed many questions concerning reliability that 
can be answered by calculating the right measurement error and reliability 
parameters, it is time to take a closer look at the design of a reliability study. 
There is more to this than just repeating measurements and calculating an 
adequate parameter.

The crucial question that must be kept in mind when designing a reliabil-
ity study is ‘For which situation do we want to know the reliability?’, because 
the design of the study should mimic that situation. We list a number of 
relevant issues that should be taken into consideration.

Which sample or population? The study sample should reflect the popu-•	
lation that we are interested in, because we have seen that reliability is 
highly dependent on the distribution of the characteristic under study 
in the population. If we want to know the reliability of measurements of 
patients, it is of no use to test the reliability of measurements of healthy 
subjects. The reliability study should be performed in a sample of those 
patients in which we want to apply the measurement instrument in the 
future.
Which part of the measurement process are we interested in? For example, •	
when assessing the inter-rater reliability of an electroencephalograph 
(EEG), we should specify whether we are only interested in the reliability 
of the readings and interpretation of the EEGs, or whether we are inter-
ested in the reliability of the whole procedure, including the positioning 
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and fixation of the electrodes on the skull. And for performance tests, are 
we interested in the inter-observer reliability of only the judgement of 
the quality of performance, or are we interested in the variation among 
physiotherapists performing the whole test with the patient independ-
ently, i.e. the physiotherapists each give their own instructions and the 
patient performs the test twice? Note that in the latter situation both the 
patient variation in performance and the influence of the physiothera-
pists’ instructions are included.
Which time interval? In the design of a test–retest reliability study we •	
have to decide on the appropriate time interval between the measure-
ments. If the characteristic under study is stable, a longer time inter-
val can be allowed, but if it changes rapidly the length of time between 
two tests should be as short as justified. There are no standard rules for 
this. The choice is based on common sense, finding a good balance, in 
general terms, between the stability of the characteristics and the inde-
pendence of the repeated tests (i.e. absence of interferences). In perform-
ance tests, interference can occur, due to pain, tiredness or muscle pain 
resulting from the first test. Interference can also occur in questionnaires 
if patients can remember their previous answers. If the questionnaire 
contains a long list of questions about everyday business, a shorter time 
interval can be used than when there are only a few rather specific ques-
tions, because then patients will find it easier to remember their previous 
answers. To give an indication, we often use a time interval of 2 weeks 
between questionnaires but there is no standard rule, given above-men-
tioned considerations.
Which situation? Situation or circumstances can be interpreted in several •	
ways, as illustrated in the following examples. In an inter-rater reliability 
study, do we want to assess the situation as it is in routine care, or are we 
interested in a perfect situation? If we want to assess the reliability of the 
performance of radiologists in everyday practice, it is of no use to select 
the best radiologists in the country, or to train the radiologists beforehand. 
If practically and ethically feasible, the radiologists should not even know 
that they are participating in the study, or whether the X-rays they assess 
are from the study sample. But when we are testing a new measurement 
instrument, for example a special positron emission tomography (PET) 
scan, on its intra-rater and inter-rater reliability, it is more appropriate to 
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select the best trained specialists to interpret the scans in order to get an 
estimation of the maximum possible reliability.
For a proper interpretation, we should be aware of the assumptions made. •	
Assessing the inter-rater reliability of X-ray interpretation, we know that the 
X-rays are exactly the same and the variation in outcomes is due to the raters. 
However, when assessing the reliability of blood pressure measurements in 
patients performed by one rater within 10 min, we either assume that the 
blood pressure is stable and attribute the variation to the rater, or we assume 
that variation in outcome may be attributed to both the rater and to the 
variation in blood pressure. When these blood pressure measurements are 
performed on different days, we probably assume that it will vary between 
measurements and we attribute the variation in outcome to both biological 
variation in blood pressure and variation in measurement by the rater. Note 
that if we assume that the rater is stable in his or her measurements, we 
might draw a conclusion about the biological variation of blood pressure. 
Therefore, the underlying assumptions determine the interpretation.

In conclusion, the key point is that the situation for the reliability study 
resembles the situation in which the measurement instrument is going to be 
used. Another important issue in the study design is to decide on how many 
patients and how many repeated measurements are needed.

5.9â•‡ Sample size for reliability studies

How many patients are needed for reliability studies? If researchers ask us 
this question, we usually say 50. About 50 patients are required to reason-
ably fill a 2 × 2 table to determine the kappa value, and to provide a reason-
able number of dots in a Bland and Altman plot to estimate the limits of 
agreement. This sample size of 50 is often the starting point for negotiations. 
Of course, researchers will argue that it is very difficult for logistic reasons 
to have so many patients examined by more than one clinician. However, if 
it concerns photographs, slides or other samples that can easily be circulated 
among the raters, a sample of 50 is usually quite feasible.

Sample size estimations for reliability parameters are not a matter of stat-
istical significance, because the issue is whether the reliability parameter 
approaches 1, and not its statistical difference from 0. An adequate sample 
size is important to obtain an acceptable confidence interval (CI) around 
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the estimated reliability parameter. Guidelines for the calculation of sam-
ple sizes for reliability studies are difficult to find in the literature. For ICC 
values, we can calculate how many patients (or objects of study) and how 
many measurements (or raters) per patient are necessary to reach a pre-
specified CI. Giraudeau and Mary (2001) provide a formula for the calcula-
tion of the sample size n:

n
z ICC m ICC

m m w
=

− + −
−

−8 1 1 1
1

1 2
2 2 2

2
α / ( ) [ ( ) ]

( )
.

In this formula, m stands for the number of measurements per patient and 
w stands for the total width of the 100(1−α)% CI for ICC, i.e. w = 0.2 for a 
CI ± 0.1. In Table 5.8 sample sizes for situations that occur frequently are 
presented.

Table 5.8 shows that lower ICC values require a larger sample size to reach 
the same CI. Moreover, by performing more measurements per patient, the 
sample size can be reduced. Logistical aspects may play a role in determining 
about the most efficient design. Note that the sample size required to obtain a 
CI of 0.1 is four times larger than for a CI of 0.2. This can easily be seen in the 
formula, where w2 appears in the denominator. Thus, to obtain a CI of 0.15 
the numbers needed for a CI of 0.1 should be divided by (1.5)2 = 2.25.

Sample size calculations for kappa values are difficult to perform, because 
in addition to the expected kappa value, we need information about the dis-
tribution of the marginals. To obtain the same width of confidence for kappa 

Table 5.8â•‡ Required sample size for ICC 0.7 and 0.8 for two to six repeated measurements

ICC = 0.7 ICC = 0.8

m repeated 
measurements

95% CI ± 0.1
n

95% CI ± 0.2
n

m repeated 
measurements

95% CI ± 0.1
n

95% CI ± 0.2
n

2 100 25 2 50 13
3 67 17 3 35 9
4 56 14 4 30 8
5 50 13 5 28 7
6 47 12 6 26 7

CI, confidence interval.
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values as for ICCs, a larger sample size is needed. This has to do with the 
ordinal or nominal nature of kappa values. As is the case for ICC, if the 
kappa value is lower a larger sample size is needed to reach the same CI.

Quite often small samples of patients are used to determine reliability 
coefficients. We recommend that a 95% CI is presented with the parameters 
of reliability. Most statistical software programs provide these for kappa and 
ICC values, but nevertheless they are seldom presented. For the limits of 
agreement, a 95% CI of the higher or lower limit of agreement can be cal-
culated as the limit of agreement ± 1.96 × √3 × SDdifference/√n (Bland and 
Altman, 1999). The 95% CIs of SEM values, and in particular for SEMagreement, 
are more difficult to obtain.

These considerations of sample size concern the number of patients and 
repeated measurements in relation to the efficiency of the design to reach the 
same CI (i.e. the precision of the estimation). However, in addition to effi-
ciency there is the issue of external validity, which concerns the generalizabil-
ity of the results to other situations. In the example concerning the range of 
shoulder movements, De Winter et al. (2004) took a sample of 155 patients 
who were assessed by two physiotherapists. If their intention was to generalize 
their results to all physiotherapists, the involvement of only two physiothera-
pists would seem to be inadequate and assessments by more than two physi-
otherapists would have been a better choice. Using designs in which various 
physiotherapists assess a sample of the patients would have been an option, 
but for these more complex designs, it is advisable to consult a statistician.

5.10â•‡ Design of reliability studies for more complex situations

Until now, we have looked at reliability studies that focus on one source of 
variation at a time (e.g. the variance among raters or the variance between 
different time-points). However, many situations involve more than one 
source of variation. For example, we might be interested in variation among 
raters who assess patients on different days and at different time-points dur-
ing the day. Sometimes we want to know the contribution of each of these 
several sources of variation (raters, days, time) separately. In particular, 
this is the case if our aim is to improve the reliability of measurements. In 
this section, we will deal with more complex questions of reliability. A reli-
ability study of blood pressure measurements will serve as an example. We 
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composed a set of variance components inspired by the study carried out by 
Rosner et al. (1987), who assessed blood pressure in children. They assessed 
the blood pressure at four different visits (each 1 week apart), and at each 
visit three measurements were performed.

In our example, we use the data of 350 boys, aged 8–12 years, and assume 
that instead of four different visits, there were four different clinicians that 
performed the measurements. Each clinician performed three measure-
ments: M1, M2, and M3. Table 5.9 presents the measurement scheme cor-
responding to the design of this example, and Table 5.10 shows the variance 
components that can be distinguished.

The total variance of one measurement in Table 5.9 can be written as

σ σ σ σ σ σ σ σy p o m po pm om residual
2 2 2 2 2 2 2 2= + + + + + + .

The variance of the patients (σâ•›2p) is of key interest, because we want to dis-
tinguish between the blood pressure levels of these boys, beyond all sources 
of measurement error. The variance components σâ•›2o and σâ•›2m represent sys-
tematic differences between clinicians and between measurements, respect-
ively, over all patients. The variance components σâ•›2po and σâ•›2pm, pointing to 
interaction, are more difficult to interpret. For example, interaction between 
boys and clinicians occurs if some boys become more relaxed because the 
clinician is friendlier, resulting in lower blood pressure values. This variance 
is expressed as σâ•›2po. If all boys react in this way, it would become visible as 

Table 5.9â•‡ Measurement scheme of 350 boys:Â€systolic blood pressure is measured three times 
by four different clinicians

Clinician 1 Clinician 2 Clinician 3 Clinician 4

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

1
2
3
•
•
349
350

M, moment.
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a systematic difference between the clinicians, and would be expressed as 
σâ•›2o. Interaction between clinicians and measurements occurs if, for example, 
some clinicians concentrate less when performing the second or third meas-
urement. The residual variance component consists of the interaction of 
the three factors (patients, observers and moments), in addition to some 
Â�random error.

In our example, we assumed that we have a crossed design, meaning 
that the four clinicians performed the three repeated measurements for all 
boys. However, for logistical reasons, crossed designs are not often used. For 
example, a doctor will often measure his/her own patients, which means that 
patients are ‘nested’ within the factor ‘doctor’. Factors can be nested or over-
lap in many ways. For a more detailed explanation of nested designs, we refer 
to Shavelson and Webb (1991), and strongly advise that a statistician should 
be consulted if you are considering using one of these complex designs.

Table 5.10â•‡ Variance components corresponding to the measurement scheme 
above

Source of 
variability Meaning of variance component

Variance 
notation

Patients (p) Variance due to systematic differences between ‘true’ 
score of patients (patients to be distinguished)

σâ•›p2

Observers (o) Variance due to systematic differences between the 
observers (clinicians in this example)

σâ•›o2

Measurements (m) Variance due to systematic differences between the 
measurements (the three measurements by the 
same clinician in this example)

σâ•›m2

p × o Variance due to the interaction of patients and 
observers (in this example boys and clinicians)

σâ•›po
2

p × m Variance due to the interaction of patients and 
measurements (in this example boys and 
measurements by the same clinician)

σâ•›pm
2

o × m Variance due to the interaction of observers and 
measurements (in this example clinicians and 
measurements by the same clinician)

σâ•›om
2

p × o × m Residual variance, partly due to the unique 
combination of p, o and m

σâ•›2residual
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Now that we have repeated measurements by different clinicians, we can 
answer many questions. For example:

(1)	 What is the reliability of the measurements, if we compare for all boys, 
one measurement by one clinician with another measurement by 
another clinician?

(2)	 What is the reliability of the measurements if we compare for all boys 
the measurements performed by the same clinician (i.e. intra-rater 
reliability)?

(3)	 What is the reliability of the measurements if we compare for all boys 
the measurements performed by different clinicians (i.e. inter-rater 
reliability)?

(4)	 Which strategy is to be recommended for increasing the reliability of 
the measurement:Â€using the average of more measurements of the boys 
by one clinician, or using the average of one measurement by different 
clinicians?

The answers to these questions are relevant, not only for clinical prac-
tice, but also for logistical reasons when designing a research project. 
These questions can all be answered by generalizability and decision 
studies.

5.11â•‡ Generalizability and decision studies

5.11.1â•‡ Generalizability studies
Generalizability and decision (G and D) studies first need to be explained 
in the context of reliability. For example, in question 3 above (Section 5.10) 
we investigate the inter-rater reliability. If this reliability is low, we might 
expect different answers from different clinicians, but if the reliability is 
high, almost similar values for blood pressure will be found by different cli-
nicians. In other words, we can generalize the values found by one clinician 
to other clinicians. Therefore, these reliability studies are called generaliz-
ability (G) studies. Question 4 above asks to choose the most reliable strat-
egy and involves a decision (D) to be taken. To answer this question we have 
to see which strategy has the highest reliability. In G and D studies we need 
formulas for a G coefficient, which is analogous to ICC, except that it con-
tains more than one source of variation.
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The total variance σy
2 at each blood pressure measurement in the example 

above can be subdivided as follows:

σy
2 = σp

2 + σo
2 + σm

2 + σpo
2 + σpm

2 + σom
2 + σ 2

residual.

In the same manner as in Section 5.3, the reliability parameter can be 
written as

Rel = =
+ + + + + +

G p

p o m po pm om residual

σ

σ σ σ σ σ σ σ

2

2 2 2 2 2 2 2 .

To understand these G coefficients properly we have to go back to the 
COSMIN definition of the measurement property reliability: the proportion 
of the total variance in the measurements, which is due to ‘true’ differences 
between the patients (Mokkink etÂ€al., 2010a):

Rel =
+
σ

σ σ
p

p error

2

2 2 .

The true variance of the patients we want to distinguish appears in the 
numerator, and the total variance is represented by σâ•›p2 + σâ•›2error in the denom-
inator. But as we address each of the four questions in turn, the subdivision 
into σp

2 and σâ•›2error will be done in different ways. While doing this we must 
not forget that the total variance is the sum of the patient variance and error 
variance, and thus:Â€patient variance = total varianceÂ€– error variance. We 
will see how this works out for questions 1, 2 and 3.

The results of three-way ANOVA to estimate the variance components 
of patients, clinicians, measurements and their interactions are reported in 
Table 5.11.

Question 1
What is the reliability of the measurements if we compare for all the boys, one 
measurement by one clinician with another measurement by another clinician?

This question refers to generalization across clinicians and across meas-
urements and, therefore, all the variance components involving clinicians 
and measurements are included in the error variance. In practical terms, 
all the variances that have o or m as subscripts are considered to be error 
variances. Analogous to ICC, the G coefficients have an agreement and a 
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consistency version. Using the data from Table 5.11, we can calculate the G 
coefficients for agreement corresponding to question 1 as follows:

Gagreement
p

p o m po pm om residual

=
+ + + + + +

=
+

σ
σ σ σ σ σ σ σ

2

2 2 2 2 2 2 2

70
70 6 ++ + + + +

=
2 30 12 3 15

0 507. .

In the consistency version of the G coefficient, the variance due to the sys-
tematic differences between clinicians σâ•›o2, the variance due to the systematic 
differences between the measurements σâ•›m2â•›â†œ, and the interaction term between 
clinicians and measurements σâ•›om

2â•‡ , are omitted from the error variance:

Gconsistency
p

p po pm residual

=
+ + +

=
+ + +

=
σ

σ σ σ σ

2

2 2 2 2

70
70 30 12 15

0 5. 551.

In the presence of systematic errors, Gconsistency will be larger than Gagreement. 
The considerations for choosing between the agreement or consistency ver-
sion of the G coefficient are exactly the same as explained for the ICC in 
Section 5.4.1. However, because the G coefficient is easier to explain for the 
consistency version, we will use only the consistency version from now on.

Question 2
What is the reliability of the measurements if we compare for all boys the 
measurements performed by the same clinician (i.e. intra-rater reliability)?

This question refers to generalization across the measurements and not 
across the clinicians. Therefore, the variance components that involve the 

Table 5.11â•‡ Values of various variance components

Variance component Value

σp
2 70

σo
2 6

σm
2 2

σpo
2 30

σpm
2 12

σom
2 3

σ2
residual 15
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multiple measurements, i.e. that include m in the subscript, are included in 
the error variance. So, the error variance consists of σâ•›2error = σâ•›2pm + σâ•›2residual. As 
the total variance remains the same, this implies that the variance compo-
nents not part of the error variance automatically become part of the patient 
variance, and the patient variance is now σâ•›p2 + σâ•›po

2 . For this situation the for-
mula for Gconsistency is as follows:

Gconsistency
p po

p po pm residual

=
+

+ + +
= +

+ +
σ σ

σ σ σ σ

2 2

2 2 2 2

70 30
70 30 122 15

0 787
+

= . .

There is another way to explain why σâ•›2po  appears in the numerator. If we 
didn’tÂ€know that there were different clinicians involved, the variance due to 
the different clinicians would have been incorporated in the observed differ-
ences between the boys.

Question 3
What is the reliability of the measurements if we compare for all boys the 
Â�measurements performed by different clinicians (i.e. inter-rater reliability)?

This question refers to generalization across the clinicians, and not 
across measurements, if only one measurement is taken by each clinician. 
Therefore, the variance components that involve multiple observers, i.e. that 
include o in the subscript, are included in the error variance. So, the error 
variance consists of σ 2

error = σâ•›po
2 + σ 2

residual. By the same reasoning as above, σ 2
pm 

will appear in the numerator as part of the patient variance. For this situ-
ation the formula for Gconsistency is as follows:

Gconsistency
p pm

p pm po residual

=
+

+ + +
= +

+ +
σ σ

σ σ σ σ

2 2

2 2 2 2

70 12
70 12 300 15

0 646
+

= . .

Notice that generalizability across different clinicians is lower than across 
different measurements (0.65 < 0.79). This means that the value of the blood 
pressure measured at one moment by one clinician can be generalized better 
to another measurement by the same clinician than to a measurement taken 
by another clinician. In other words, there is more variation between the 
different clinicians than between the measurements taken by one clinician. 
This leads to the fourth question.
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5.11.2â•‡ Decision studies
For question 4, we switch from G studies to D studies. That is because ques-
tion 4 concerns a strategy, i.e. a decision about the most efficient use of 
repeated measurements in order to achieve the highest reliability.

Question 4
Which strategy is to be recommended for increasing the reliability of the 
measurement:Â€using the average of more measurements of the boys by one 
clinician, or using the average of one measurement by different clinicians?

This question requires generalization across clinicians and measure-
ments. Therefore, all variance components with o and m in the subscript in 
the Gconsistency formula appear in the error variance.

In the situation in which more measurements of the boys are made by 
one clinician, we average the three values of the repeated measurements per 
clinician. In that case, as we have seen in Section 5.4.1.2, all variances with m 
in the subscript are divided by the factor 3. This also applies to the residual 
variance because, as can be seen in Table 5.10, the residual variance includes 
interaction between factors p, o and m. If the value of three repeated meas-
urements are averaged, the formula for the G coefficient is

Gconsistency
p

p po
pm residual

=
+ + +

=
+ + +

σ

σ σ
σ σ

2

2 2
2 2

3 3

70

70 30 12
3

15
3

== 0 642. .

In the situation in which the boys have one single measurement by four dif-
ferent clinicians, we average the values of the repeated measurements of the 
four clinicians. In this case, all variances with o in the subscript are divided 
by a factor 4. The G coefficient formula then becomes

Gconsistency
p

p
po

pm
residual

=
+ + +

=
+ + +

σ

σ
σ

σ σ

2

2
2

2
2

4 4

70

70 30
4

12 15
4

== 0 751. .

Thus, the idea is that error variance can be reduced by performing repeated 
measurements and assessing the reliability of the averaged values:Â€each vari-
ance component that contains the factor over which the average is taken is 
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divided by the number of measurements being averaged. Averaging over dif-
ferent clinicians is the more advantageous strategy, because the G coefficient 
is larger (0.751 versus 0.642). This is not simply because there are more cli-
nicians than there are measurements. You might check that averaging over 
three clinicians leads to a G coefficient of 0.722, which is still larger than 
the 0.642 obtained when averaging over three measurements made by one 
clinician.

Deciding how to achieve the most efficient measurement design is referred 
to as a D study. Note that this is not really a study in which new data are col-
lected, it just implies drawing additional conclusions from the data of the 
G study. We can take decisions about all the sources of variability that have 
been included in the G study. For example, using the variances found in our 
G study on blood pressure measurements, we can calculate the G coefficient 
for a situation in which we use 10 repeated measurements per patient or in 
which we use the measurements made by two or five clinicians.

It is evident that maximum gain in reliability is achieved if we can aver-
age over the largest sources of variation. In the example above, the variation 
among clinicians is greater than the variation among multiple measure-
ments by the same clinician (see Table 5.11). Therefore, averaging over cli-
nicians turned out to be more advantageous. However, apart from the G 
coefficient, practical consequences must also be taken into account. For 
logistical reasons, we might choose multiple measurements per clinician, 
because the involvement of different clinicians costs more time and effort. 
One has to weigh these costs against the gain in reliability.

For didactical reasons, we have used the formulas to come to this con-
clusion. However, it is clear which strategy would be best:Â€dividing the lar-
gest variance components will result in the greatest increase in reliability. 
Therefore, to improve the reliability we have to identify the source of vari-
ation that contributes most to the error. If we are able to reduce this source, 
the gain in reliability will be highest. We have presented the proportional 
contribution of the various components to the total variance in Table 5.12.

Using the variance components in this table, we can calculate the G coef-
ficients, and after considering the practical consequences, we can decide 
on the most efficient measurement strategy. If we were to calculate the G 
coefficients for agreement, the variance components of the systematic dif-
ferences would also need to appear in Table 5.12. As we have said before 
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the Gagreement formulas are more complex, and we recommend consulting a 
statistician when these are to be used.

5.12â•‡ Cronbach’s alpha as a reliability parameter

In the beginning of this chapter, we promised to demonstrate that Cronbach’s 
alpha is a reliability parameter. For this reason, instead of the term ‘internal 
consistency’, the terms ‘internal reliability’ and ‘structural reliability’ are also 
used in the literature. The repetition is not measurement by different obser-
vers, on different occasions or at different time-points, the repetition is rather 
measurement by different items in the multi-item measurement instrument, 
which all aim to measure the same construct. Therefore, Cronbach’s alpha 
can be based on a single measurement. We recall here Formula 5.1, in which 
we presented the basic formula of the CTT for repeated measurements:

Yi = η + εi.� (5.1)

In Section 5.4.1.2, we saw that when we take the average value of multiple 
measurements, the error variance can be divided by the number of meas-
urements over which the average is taken. This principle can be applied to 
Cronbach’s alpha:Â€in a multi-item instrument, if we consider one scale based 
on a reflective model, the construct is measured repeatedly by each item, 
but then to calculate the score of the scale we take the sum or the average of 
all items. Let us return to the somatization scale (Terluin et al., 2006) as an 
example. The somatization scale consists of 16 symptoms, measuring among 
other things:Â€headache, shortness of breath and tingling in the fingers. The 
questions refer to whether the patient suffered from these symptoms during 

Table 5.12â•‡ Values of various variance components

Variance notation Value Proportion of total variance

σâ•›p2 70 0.551

σâ•›po
2 30 0.236

σâ•›pm
2 12 0.095

σâ•›2residual 15 0.118
Total variance:
σâ•›p2 + σpo

2 + σpm
2 + σâ•›2residual
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the previous week and the response options are ‘no’, ‘sometimes’, ‘regularly’, 
‘often’ and ‘very often or constantly’. All 16 symptoms are indicative of soma-
tization, and the scale has been shown to be unidimensional. Each item is 
scored 0 (‘no’), 1 (‘sometimes’) or 2 (all other categories), which results in a 
score from 0 to 32, a higher score indicating a higher tendency to somatize.

The items are summed (or averaged) to obtain a score for the construct, 
and by using 16 items to get the best estimation of the construct, the error 
term is divided by 16 (the number of items). We calculate the G coefficient 
for consistency as follows:

Gconsistency
p

p
error

=
+

σ

σ σ

2

2
2

16

.

This G coefficient is Cronbach’s alpha. Based on the notion that Cronbach’s 
alpha is one of the many ICC versions, there are a number of interesting 
characteristics of Cronbach’s alpha:

As we already noticed in •	 Chapter 4, Cronbach’s alpha depends on the num-
ber of items. The explanation becomes apparent in the formula above. If 
we had measured somatization with 32 items instead of 16, the error vari-
ance would be divided by 32. This increases the reliability, and thus also 
Cronbach’s alpha.
Cronbach’s alpha, like all other reliability parameters, depends on the •	
variation in the population. This means that in heterogeneous populations 
a higher value of Cronbach’s alpha will be found than in homogeneous 
populations. So, be aware that Cronbach’s alpha is sample-dependent and, 
just like validity and test–retest reliability, a characteristic of an instru-
ment used in a population, and not a characteristic of a measurement 
instrument.

Together with the output of reliability analysis for ICCagreement and ICCconsistency 
(Section 5.4.1), comes Cronbach’s alpha. Notice that the value for Cronbach’s 
alpha equals the average ICC measures for consistency. By running these 
analyses yourselves you will see that both the outputs of ICCagreement and 
ICCconsistency mention a value for Cronbach’s alpha of 0.896. By now you 
should be able to understand why that is the case.
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5.13â•‡� Reliability parameters and measurement error obtained by item 
response theory analysis

As we have already seen in Chapters 2 and 4, IRT can be used to investigate 
various characteristics at item level. In the CTT the SEM is calculated, and 
assumed to be stable, over the total scale. Recall that in constructing the 
Bland and Altman plot we explicitly made this assumption. In the IRT, the 
item characteristic curves i.e. the discrimination (slope) and the difficulty 
parameter, can be estimated per item. The next step is that the Â�ability (θ) of 
the patients in the sample is estimated from the discrimination and diffi-
culty parameters of the items. This estimation of a patient’s ability is accom-
panied by a standard error (SE), which concerns the internal consistency, 
indicating how good the items can distinguish patients from each other. 
Like Cronbach’s alpha, the SE is based on a single measurement, and not on 
test–retest analysis.

In IRT, reliability is determined by the discriminating ability of the items. 
In Figure 5.6 (similar to Figure 2.6), item 2 has a higher discriminating value 
than item 1. We say that high discriminating items provide more informa-
tion about a patient’s ability. A measurement instrument with a large number 
of highly discriminating items, like item 2, will give more precise informa-
tion about the location of persons on the ability (θ) axis than a measurement 
instrument containing items like item 1. Therefore, it will be better able to 
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Figure 5.6	 Item characteristic curves for two items with the same difficulty but differing in 
discrimination.
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distinguish patients from each other. To illustrate this principle, the infor-
mation curves of items 1 and 2 in Figure 5.6 are shown in Figure 5.7(a,b).

Figure 5.7(a) shows the information curves of these two items, and Figure 
5.7(b) shows the SEs of these items. The less discriminating item 1 has a flat-
ter and more widely spread information curve. Item 2 is better able to dis-
criminate between the ability of the patients than item 1 and contains more 
information. The formula is as follows:

Ii(θ) = ai
2Pi(θ)[1−Pi(θ)].

The information level of an item is optimal when the item difficulty cor-
responds to the particular trait score of a patient, and when item discrim-
ination is high. If the amount of information is highest, the SE (which is 
comparable with the SEM) is lowest (see Figure 5.7(b)). The SE is the recip-
rocal of the amount of information. Until now, we have been talking about 
a single item and a single patient. To obtain a total SE for a patient that has 
completed the entire questionnaire, the information from all items for this 
patient are summed:

I I SE
Ii

i
( ) ( ) ( )

( )
.θθ θ

θ
= =∑ and 1

As a last step, the SE of each patient can be averaged over the population 
to obtain a summary index of reliability for the population. However, the 
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Figure 5.7	 Information curves (a) and standard error curves (b) for two items.
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advantage of having information about the varying reliability over the scale 
is then lost.

5.14â•‡ Reliability and computer adaptive testing

As described in Chapter 2, the essential characteristic of computer adaptive 
testing (CAT) is that the test or questionnaire is tailored to the ‘ability’ of 
the individual. This means that for each respondent, items are chosen that 
correspond to his/her ability. Without any previous information, one would 
usually start with items with a difficulty parameter betweenÂ€–0.5 and +0.5. If 
a patient gives a confirmative answer to the first item, the next item will be 
more difficult, but if the answer is negative, the next item will be easier. With 
a few questions, the computer tries to locate the patient at a certain range 
of positions on the scale. Knowing that an item gives the most information 
about a respondent if he/she has a probability of 0.5 of giving a confirmative 
answer, items in this range will be used to estimate a patient’s position on 
the x-axis. Thinking about this strategy in terms of reliability, it is obvious 
that with a small number of items one tries to obtain the maximum amount 
of information. As we learned in Section 5.13, this implies a small measure-
ment error, and thus high reliability. It is this very principle that makes the 
CAT tests shorter. An important question is:Â€when does one stop admin-
istering new items to a respondent? The most commonly applied stopping 
rule is to keep administering items until the SE is below a certain a priori 
defined value. In general, fewer items are needed for CAT tests than for the 
corresponding ‘regular’ tests. Moreover, with fewer items there is an equal or 
even lower level of measurement error. This is shown in Figure 5.8, which is 
based on the PROMIS item bank for measuring physical functioning (Rose 
et al., 2008).

Figure 5.8 shows the measurement precision, expressed as SE for a CAT 
questionnaire consisting of 10 questions compared with other instruments 
that assess physical functioning. With fewer items, there are smaller SEs. 
Only the 53-item questionnaire resulted in smaller SEs. The SE values of 5.0, 
3.3 and 2.3 as shown in Figure 5.8, correspond to reliability parameters of 
0.80, 0.90 and 0.95, respectively, if we assume that SD = 10. In Figure 5.8 the 
SE is presented on the y-axis, but sometimes the number of items needed to 
obtain a certain SE value is represented on the y-axis.

  



Reliability142

5.15â•‡ Reliability at group level and individual level

In the literature on reliability, it is often stated that ICC values of 0.70 are 
acceptable if an instrument is used in measurements of groups of patients. 
However, for application in individual patients, ICC values as high as 0.90 
and preferably 0.95 are required (Nunnally and Bernstein, 1994). In this sec-
tion, we explain why higher values for reliability are required for the meas-
urement of individual patients.

The first reason is that measurement of individual patients is usu-
ally Â�followed by a specific decision for this particular patient, while the 
consequences of research findings for clinical practice are only indirect. 
Therefore, for use in clinical practice one has to have high confidence in 
the obtained value. Note that with an ICC value of 0.90, using the formula 
SEM = SDÂ€√(1Â€– ICC) presented in Section 5.4.2.1, SEM values are 1/3 SD. 
In section 5.4.1.2, we described how measurement errors could be reduced 
by taking the average of multiple measurements. The error term can be 
divided by a factor √k, when k is the number of repeated measurements. 
When the measurement error decreases, the value of ICC will increase. 
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Figure 5.8	 Standard errors for various questionnaires to assess physical functioning, includ-
ing a 10-item Computer Adaptive Testing (CAT) questionnaire. Rose et al. (2008), 
with permission.
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This is illustrated by the following formulas, assuming a situation with a 
single score per patient, and a situation in which the scores of k measure-
ments are averaged, respectively:
When using a single measurement

IC .Cconsistency
p

p error

=
+

σ

σ σ

2

2 2

When using the mean value of k measurements

IC .C

k

consistency
p

p
error

=
+

σ

σ
σ

2

2
2

Repeating the number of measurements and averaging the results is an 
adequate way in which to increase the ICC value to an acceptable level.

The second reason why higher values for reliability parameters are 
required for individual patients, compared with groups of patients has to do 
with the statistical principles of calculating group mean and SE. If measure-
ments of patients are averaged to obtain a group mean, this is accompanied 
by SE of the mean, which, as we all learned in our basic courses in statistics, 
equals SD/√n. This SD consists of deviations of the scores of individual group 
members from the value of the group mean, plus measurement error.

The basic formula of the classical test theory (Formula 5.1) is slightly 
rewritten as

Yi = θi + εi

in which θi now represents the score of each patient i in the group. The vari-
ance of Yi is:

Var Yi = σâ•›θ2 + σâ•›e2

and the variance of the mean value of Y (Ȳâ•›) is

Var Ȳ = (σâ•›θ
2 + σâ•›e

2)/n.

As the Var Ȳ equals SE2
Ȳ, it follows that:

SE .
Y n

SEM
n

_

2 2 2 2

=
+

=
+σ σ σθ θe
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In this formula, it can be seen that by using the SE of the mean, the stand-
ard error of measurement is divided by √n. Therefore, when we are exam-
ining groups of patients, the measurement error is reduced by a factor √n, 
when the group consists of n patients. However, we can not distinguish the 
measurement error variance from the between-patient variance.

Therefore, the reason why ICC values of 0.70 suffice for application in 
groups of patients (Nunnally and Bernstein, 1994) is that one anticipates 
that averaging the scores reduces the measurement error. In fact, in both 
clinical practice and research very reliable instruments are required. In clin-
ical practice, this has to be achieved by using a measurement instrument 
with a small measurement error, or by averaging the scores of repeated 
measurements. In research, increasing the sample size will help. Note that, 
as a consequence, more reliable measurement instruments are required for 
use in clinical practice.

5.16â•‡ Improving the reliability of measurements

In Section 5.1, we stated that reliability concerns the anticipation, assess-
ment and control of sources of variation, and that the ultimate aim of reli-
ability studies is to improve the reliability of measurements. Throughout this 
chapter, we have already encountered a number of strategies that can be 
used for this purpose, but here we will summarize these strategies to give 
an overview.

•	 Restriction. Restriction means that we avoid a specific source of variation. 
For example, when we know that the amount of fatigue that patients 
experience increases during the day, we can exclude this variation by 
measuring every patient at the same hour of the day.

•	 Training and standardization. The reliability of measurements can be 
improved by intensive training of the raters or by standardization of the 
procedure. For example, physiotherapists can be trained to carry out 
performance tests. They should be trained to use exactly the same text 
to instruct the patients, they should try to do that with a similar amount 
of enthusiasm, and there should be agreement on whether, and to what 
extent, they should encourage the patients during the performance of 
the tests.
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•	 Averaging of repeated measurements. In the previous section we have 
explained how averaging repeated measurements reduces the measure-
ment error. This only affects the random error, not the systematic error. 
If it is possible to make repeated measurements of the largest sources of 
variation, the increase in reliability is highest. We have described how this 
works, using the G coefficient.

5.17â•‡ Summary

Reliability and measurement error are two different, but related, concepts. 
Important parameters for assessing reliability are Cohen’s kappa for meas-
urements on a nominal scale (unweighted kappa) or ordinal scale (weighted 
kappa) and the ICC for measurements with continuous outcomes. There 
are various ICC formulas. We have differentiated between ICCconsistency and 
ICCagreement. In ICCconsistency systematic errors are not included in the error 
variance, and this applies when the source of variation is fixed (e.g. we are 
only interested in the raters involved in this specific reliability study). If our 
aim is to generalize and consider the source of variation as a random fac-
tor, we can choose between ICCconsistency and ICCagreement. In that case, we use 
ICCagreement when interested in the absolute agreement between the repeated 
measurements, and ICCconsistency when we are only interested in the ranking. 
For the assessment of measurement error, we have mentioned the SEM and 
limits of agreement (Bland and Altman method).

The interpretation of all these parameters is facilitated by a detailed pres-
entation of the results. This holds for the Bland and Altman plot, for a full 
presentation of the tables underlying the kappa values, and a presentation of 
the variance components incorporated in the ICC formula.

Parameters of measurement error are of great value for clinicians. They 
are expressed in the units of measurement, which often facilitates interpret-
ation for clinicians. Moreover, they are most relevant when monitoring the 
health status of patients, and when deciding whether changes exceed the 
measurement errors. Unfortunately, in medicine, too often only parameters 
of reliability are used. The SEM can only be derived if the error variance is 
reported in addition to an ICC value, or when the SD of the population in 
which the ICC is determined is known.
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When designing a reliability study, the aim of the study should be kept 
in mind. Important questions are:Â€To which raters do you want to general-
ize? For which part of the measurement process do you want to know the 
reliability? What is the target population? The latter is of major importance, 
because the heterogeneity of the study population has substantial influence 
on the parameters of reliability.

In the case of multi-item measurement instruments, the number of items 
that are included can be used to increase the reliability of the instrument. 
We have shown that Cronbach’s alpha is a reliability parameter. CAT also 
makes use of the principle that the SE can be reduced by repeated measure-
ments, and that by tailoring the measurements to the ability of the patients, 
the internal reliability of measurements can be substantially improved. A 
high internal reliability or internal consistency does not imply that the test–
retest reliability is also high, because these are different sources of variation. 
Therefore, internal consistency cannot replace test–retest reliability.

In G and D studies, it becomes clear that knowledge about the dif-
ferent sources of variation is vital to improve the reliability of measure-
ments. Anticipating large sources of variation reduces measurement errors. 
Strategies to avoid measurement errors are, for example, restriction to one 
rater, or standardization of the time-points of measurement. Measurement 
error can be reduced, for example, through better calibration of measure-
ment instruments, or more intensive training for raters. Consensus among 
raters with regard to the scoring criteria may also help to increase reliability. 
If these strategies cannot be applied, multiple measurements can be made 
and the values averaged to reduce measurement error. We can only improve 
the quality of measurements by paying attention to reliability and measure-
ment errors.

Assignments

1.â•‡ Calculation and interpretation of intraclass correlation coefficient
In the example concerning range of movement (ROM) in patients with 
shoulder complaints we used data on 50 patients, and we purposefully intro-
duced a systematic error. For the current assignment, we use the complete 
data set for 155 patients (De Winter et al., 2004), which can be found on the 
website www.clinimetrics.nl.
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(a)	 Use this data set to calculate the means and SDs of Mary’s and Peter’s 
scores, the mean difference and the SD of the difference, and both the 
ICC for agreement and the ICC for consistency (and 95% CI).

(b)	 Which parameter do you prefer:Â€ICCconsistency or ICCagreement?
(c)	 Can you explain why there is such a difference between the ICCs for the 

affected side and the non-affected side?

2.â•‡ Calculation of measurement error

(a)	 Calculate SEMagreement and SEMconsistency for the affected shoulder and the 
non-affected shoulder.

(b)	 Now that you have seen that SEMs for the affected shoulder and non-
affected shoulder are roughly the same, what is your explanation for 
assignment 1(c)?

(c)	 Draw a Bland and Altman plot for the affected side.
(d)	 Calculate the limits of agreement.

3.â•‡� Calculation of standard error of measurement by rewriting the intraclass 
correlation coefficient formula

In Section 5.4.2.1, we warned against the use of the formula SEM = σy √(1Â€– 
ICC). Suppose researchers measured the ROM of shoulders in the general 
population, and the SD of the scores in this population was 8.00. In the 
literature, the researchers find an ICC value of 0.83 for the ROM of shoul-
ders. They decide to calculate the SEM for these measurements as SEM = 
SDpooled√(1Â€– ICCconsistency) = 8.00 × √(1Â€– 0.83) = 3.30.

Comment on this calculation.

4.â•‡ Calculation of kappa
EEG recordings have been introduced as a potentially valuable method 
with which to monitor the central nervous function in comatose patients. 
In these patients, it is relevant to detect refractory convulsive status epilep-
ticus, because patients experiencing such seizures may easily recover from 
the coma if they receive medication. Ronner et al. (2009) designed an inter-
observer study with nine clinicians to evaluate EEG recordings, and these 
clinicians had to decide for each EEG whether or not there was any evidence 
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of an electrographic seizure. The results of two clinicians are presented in 
Table 5.13.

(a)	 Calculate Cohen’s kappa value for these two observers. You may try to 
do it manually to practise using the formulas presented in this chapter.

(b)	 In order to obtain a 95% CI for the kappa value you have to use a computer 
program (see Section 5.5.1.2). Check your calculated kappa value, and cal-
culate the 95% CI.

(c)	 How do you interpret this kappa value?

5.â•‡ Calculation of weighted kappa
In Section 5.5.1.2, we presented the formula that should be used to calculate 
weighted kappa values, and the weights that are often used. For Table 5.5 in 
this section we provided the result of the weighted kappa obtained by a com-
puter program. Are you able to reproduce this value, filling in the formula?

6.â•‡ Design of a generalizability study
Researchers developed the Pain Assessment Checklist for Seniors with 
Limited Ability to Communicate (PACSLAC), an observation scale for the 
assessment of pain in elderly people with dementia. Nursing home doctors 
decide to introduce this scale in their nursing homes, but they want to know 
how the scale should be used to obtain a reliable outcome.

(a)	 What sources of variation can you think of?
(b)	 Draw a measurement scheme for a G study, with four different factors.

Table 5.13â•‡ Results of two clinicians

Clinician 1

Clinician 2 EEG+ EEG– Total

EEG+ 17 0 17
EEG– â•‡ 5 8 13
Total 22 8 30

EEG+ denotes evidence of seizure and EEG– denotes no evidence of seizure on the 
encephalo-electrogram.
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7.â•‡ Exercise on generalizability and decision studies
(a)	 In Table 5.12 we presented the variance components for the G and D 

study focusing on blood pressure measurements in boys. We saw that 
different clinicians were a larger source of variation than multiple 
measurements made by the same clinician. To increase reliability, we 
can either have measurements made by different clinicians or multiple 
measurement made by one clinician. When do we achieve the high-
est reliability:Â€when one measurement is made by two different clini-
cians, or when five measurements are made during one visit by the same 
clinician? We first assume that there are no systematic errors, and use 
Gconsistency for the calculations.

(b)	 We had ignored systematic errors, but if there are any, which ones do 
you expect to be larger:Â€those between clinicians or those between mul-
tiple measurements made by the same clinician? Does that change the 
decision about the most reliable measurement strategy?
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6

Validity

6.1â•‡ Introduction

Validity is defined by the COSMIN panel as ‘the degree to which an instru-
ment truly measures the construct(s) it purports to measure’ (Mokkink 
et al., 2010a). This definition seems to be quite simple, but there has been 
much discussion in the past about how validity should be assessed and 
how its results should be interpreted. Psychologists, in particular, have 
struggled with this problem, because, as we saw in Chapters 2 and 3, they 
often have to deal with ‘unobservable’ constructs. This makes it difficult 
for them to judge whether they are measuring the right thing. In gen-
eral, three different types of validity can be distinguished:Â€content valid-
ity, criterion validity and construct validity. Content validity focuses on 
whether the content of the instrument corresponds with the construct 
that one intends to measure, with regard to relevance and comprehen-
siveness. Criterion validity, applicable in situations in which there is a 
gold standard for the construct to be measured, refers to how well the 
scores of the measurement instrument agree with the scores on the gold 
standard. Construct validity, applicable in situations in which there is no 
gold standard, refers to whether the instrument provides the expected 
scores, based on existing knowledge about the construct. Within these 
three main types of validity, there are numerous subtypes, as we will see 
later in this chapter.

We will start with a concise overview of the literature about the concept of 
validity, and point out a number of important implications for our current 
thoughts about validation. Then we will focus on several types of validity, 
and discuss their roles and applications in the validation process. The exam-
ples we use are derived from different medical disciplines.
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6.2â•‡ The concept of validity

The discussion about validity started in the mid fifties in psychological lit-
erature. Before that time, validation was mostly a matter of predicting out-
come. However, it became clear that this method of validation did not add 
much to the knowledge about the constructs and to the formation of the-
ories. Therefore, Cronbach and Meehl (1955) proposed to start from theor-
ies about the construct, and then formulate hypotheses. These hypotheses 
concern relationships of the construct under study with other constructs 
or hypotheses about values of the construct, dependent on characteristics 
of patient groups. Thus, validation consists of testing hypotheses. If these 
hypotheses are not rejected then the instrument is apparently suitable to 
measure that construct. Thus, the issue is not simply whether an instrument 
truly measures a construct, but whether scores of the instrument are consist-
ent with a theoretical model of the construct (Cronbach and Meehl, 1955).

In a recent overview, Strauss and Smith (2009) nicely summarized these 
ideas about the concept of validation. For those who are interested in philo-
sophical issues, this paper offers much ‘food for thought’. Although the 
discussions took place in the field of psychology, they have influenced cur-
rent thoughts about validation in all fields of medicine. We have extracted 
a number of important implications from this overview, as listed and dis-
cussed below. These concern the following issues:

knowledge about the construct to be measured•	
complexity of the construct•	
dependency on the situation•	
validation of scores, not measurement instruments•	
formulation of specific hypotheses•	
validation as a continuous process.•	

Knowledge about the construct
We emphasized the theoretical foundations of constructs and the presenta-
tion of conceptual models in Chapter 2. Now we see why this is of crucial 
importance for validation, i.e. we can only assess whether a measurement 
instrument measures what it purports to measure if researchers have clearly 
described the construct they intend to measure. Subsequently, we have to for-
mulate hypotheses about what scores we expect to find on the measurement 
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instruments, based on our knowledge of the construct. Therefore, detailed 
knowledge of the construct and a conceptual model to hypothesize rela-
tionships with other constructs are indispensable for a sound validation 
process.

Complexity of the construct
A simple (unidimensional) construct is often easier to validate than a com-
plex (multidimensional) construct. For example, if we want to evaluate an 
instrument to measure fatigue, it is much easier to formulate hypotheses 
about specific aspects of fatigue (e.g. only physical fatigue, or only mental 
fatigue) than about fatigue in general. As described in Section 3.3, when 
measuring overall fatigue we are not sure which aspects are included and 
how respondents weight these, which makes it difficult to predict relation-
ships with related constructs. It might be much easier to predict relation-
ships with related constructs for physical fatigue or mental fatigue. Note that 
when using a multidimensional instrument, each scale or each part of the 
instrument that measures a specific dimension should be validated, by for-
mulating hypotheses for each dimension separately.

Dependency on the situation
A measurement instrument should be validated again if it is applied in a new 
situation or for another purpose. Suppose we have a measurement instru-
ment to assess mobility, which was developed for adults with mobility prob-
lems. If we want to use this instrument in an elderly population, we have to 
validate it for use in this new target population, because this is a new situ-
ation. The Food and Drug Administration (FDA) Guidance Committee has 
described in detail what they consider to be new situations (FDA Guidance, 
2009, pp. 20–1). For example, the application of an instrument in another 
target population, another language, or another form of administration (e.g. 
interview versus self-report) is considered to be a new situation. A well-
known type of validation is cross-cultural validation, i.e. validation when an 
instrument is applied in countries with a different culture and language. For 
example, the Short-Form 36 (SF-36) has been translated and cross-culturally 
validated for a large number of languages (Wagner et al., 1998).

It is also common practice to use instruments for broader applications 
than those for which they were originally developed. As an example, the 
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Roland–Morris Disability Questionnaire was originally developed for 
patients with non-specific low back pain, but later applied to patients with 
radiating low back pain (sciatica) (Patrick et al., 1995). A new validation 
study was therefore performed in the new target population.

Validation of scores, not measurement instruments
Validation focuses on the scores produced by a measurement instrument, 
and not on the instrument itself. This is a consequence of the previous point, 
i.e. that a measurement instrument might function differently in other situ-
ations. As Nunnally (1978) stated:Â€ ‘strictly speaking, one validates not a 
measurement instrument, but rather some use to which the measurement 
instrument is put’. So, we can never state that a measurement instrument is 
valid, only that it provides valid scores in the specific situation in which it 
has been tested. Therefore, the phrase that you often read in scientific papers, 
that ‘valid instruments were used’, should always be doubted, unless there is 
an indication as to which population and context this statement applies.

Formulation of specific hypotheses
Tests of validation require the formulation of hypotheses, and these hypoth-
eses should be as specific as possible. Existing knowledge about the con-
struct should drive the hypotheses. When researchers decide to develop a 
new instrument in a field in which other instruments are available, they 
should state on which points they expect their instrument to be better than 
the already existing instruments. The validation process should be based on 
hypotheses regarding these specific claims about why the new instrument is 
better. For example, if we want to develop an instrument mainly to measure 
physical functioning, and not focus so much on pain as other instruments 
do, there should be hypotheses stating that the correlation with pain is less 
for the new instrument than for the existing instruments.

Validation as a continuous process
A precise theory and extensive knowledge of the construct under study ena-
bles a strong validation test. This represents the ideal situation. However, 
when a construct is newly developed, at first there are only vague thoughts, 
or less detailed theories and construct definitions. In that case, the hypoth-
eses are much weaker, and consequently, this also applies to the evidence 
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they generate about the validity of the measurement instrument. When 
knowledge in a certain field is evolving, the initial theory will be rather weak 
but during the process of validation, theories about the construct and val-
idation of measurements will probably become stronger. The same applies 
to the extension of empirical evidence concerning the construct. This is an 
iterative process in which testing of partially developed theories provides 
information that leads to refinement and elaboration of the theory, which 
in turn provides a stronger basis for subsequent construct and theory, and 
strengthen the validation of the measurement instrument. For these Â�reasons, 
and also because measurements are often applied in different situations, 
Â�validation is a continuous process.

This overview shows that validation of a measurement instrument cannot 
be disentangled from the validity of underlying theories about the construct, 
and from scores on the measurement instrument. Recently, the discussion 
about validity has been revived by Borsboom et al. (2004) who state that a test 
is valid for measuring a construct if and only if (a) the construct exists, and 
(b) variations in the construct causally produce variations in measurement 
outcomes. They emphasize that the crucial ingredient of validity involves 
the causal role of the construct in determining what value the measure-
ment outcomes will take. This implies that validity testing should be focused 
on the process that convey this role, and tables of correlations between test 
scores and other measures provide only circumstantial evidence for validity. 
However, examples of such validation processes have been scarce until now.

In the validation process different types of validation can be applied, and 
the evidence from these different types of validation should be integrated 
to come to a conclusion about the degree of validity of the instrument in a 
specific population and context. We will now discuss various types of valid-
ation, and present some specific examples.

6.3â•‡ Content validity (including face validity)

Content validity is defined by the COSMIN panel as ‘the degree to which 
the content of a measurement instrument is an adequate reflection of the 
construct to be measured’ (Mokkink et al., 2010a). For example, if the 
construct we want to measure is body weight, a weighing scale is suffi-
cient. To measure the construct of obesity, defined as a body mass index 
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(BMI = weight/height2) > 30 kg/m2, a weighing scale and a measuring 
rod are needed. Now, suppose that we are interested in the construct of 
undernutrition in the elderly, with undernutrition defined as a form of 
malnutrition resulting from an insufficient supply of food, or from inabil-
ity to digest, assimilate and use the necessary nutrients. In that case, a 
weighing scale and a measuring rod will not be sufficient, because the 
concept of undernutrition is broader than just weight and height.

6.3.1â•‡ Face validity
A first aspect of content validity is face validity. The COSMIN panel defined 
face validity as ‘the degree to which a measurement instrument, indeed, 
looks as though it is an adequate reflection of the construct to be meas-
ured’ (Mokkink et al., 2010a). It concerns an overall view, which is often a 
first impression, without going into too much detail. It is a subjective assess-
ment and, therefore, there are no standards with regard to how it should 
be assessed, and it cannot be quantified. As a result, the value of face valid-
ation is often underestimated. Note that, in particular, ‘lack of face validity’ 
is a very strong argument for not using an instrument, or to end further 
validation. For example, when selecting a questionnaire to assess physical 
activity in an elderly population, just reading the questions may give a first 
impression:Â€questionnaires containing a large number of items about activ-
ities that are no longer performed by elderly people are not considered to 
be suitable. Other questionnaires may be examined in more detail to assess 
which ones contain items corresponding to the type of activities that the 
elderly do perform.

6.3.2â•‡ Content validity
When an instrument has passed the test of face validation, we have to con-
sider its content in more detail. The purpose of a content validation study 
is to assess whether the measurement instrument adequately represents 
the construct under study. We again emphasize the importance of a good 
description of the construct to be measured. For multi-item questionnaires, 
this implies that the items should be both relevant and comprehensive for 
the construct to be measured. Relevance can be assessed with the following 
three questions:Â€Do all items refer to relevant aspects of the construct to be 

 

 

 

 



Validity156

measured? Are all items relevant for the study population, for example, with 
respect to age, gender, disease characteristics, languages, countries, settings? 
Are all items relevant for the purpose of the application of the measurement 
instrument? Possible purposes (Section 3.2.3) are discrimination (i.e. to dis-
tinguish between persons at one point in time), evaluation (i.e. to assess 
change over time) or prediction (i.e. to predict future outcomes). All these 
questions assess whether the items are relevant for measuring the construct. 
Comprehensiveness is the other side of the coin, i.e. is the construct com-
pletely covered by the items.

The process of content validation consists of the following steps:

(1)	 consider information about construct and situation
(2)	 consider information about content of the measurement instrument
(3)	 select an expert panel
(4)	 assess whether content of the measurement instrument corresponds 

with the construct (is relevant and comprehensive)
(5)	 use a strategy or framework to assess the correspondence between the 

instrument and construct

1:Â€Consider information about construct and situation
To assess the content validity of an instrument, the construct to be meas-
ured should be clearly specified. As described in Chapter 3 (Section 3.2), 
this entails an elaboration of the theoretical background and/or conceptual 
model, and a description of the situation of use in terms of the target popu-
lation, and purpose of the measurement. A nice example of elaboration of a 
construct is provided by Gerritsen et al. (2004), who compared various con-
ceptual models of quality of life in nursing home residents.

Information about the construct should be considered by both the devel-
oper of a measurement instrument (who should provide this information), 
and by the user of a measurement instrument (who should collect this infor-
mation about the construct).

2:Â€Consider information about content of the measurement instrument
In order to be able to assess whether a specific measurement instrument 
covers the content of the construct, developers should have provided full 
details about the measurement instrument, including procedures. If the 
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new measurement instrument concerns, for example, a MRI procedure, or 
a new laboratory test, the materials, methods and procedures, and scoring 
must be described in such a way that researchers in that specific field can 
repeat it. If the measurement instrument is a questionnaire, a full copy of 
the questionnaire (i.e. all items and response options, including the instruc-
tions) must be available, either in the article, appendix, on a website or on 
request from the authors. Furthermore, details of the development process 
may be relevant, such as a list of the literature that was used or other instru-
ments that were used as a basis, and which experts were consulted. All this 
information should be taken into consideration in the assessment of con-
tent validity.

3:Â€Select an expert panel
The content validity of a measurement instrument is assessed by researchers 
who are going to use it. Note, however, that developers of a measurement 
instrument are often biased with regard to their own instrument. Therefore, 
content validity should preferably be assessed by an independent panel. For 
all measurement instruments, it is important that content validity should be 
assessed by experts in the relevant field of medicine. For example, experts 
who are familiar with the field of radiology are required to judge the adequacy 
of various MRI techniques. For patient-reported outcomes (PROs), patients 
and, particularly representatives of the target population, are the experts. 
They are the most appropriate assessors of the relevance of the items in 
the questionnaire, and they can also indicate whether important items or 
aspects are missing. In Chapter 3 (Section 3.4.1.3) we gave an example of 
how patients from the target population were involved in the development 
of an instrument to assess health-related quality of life (HRQL) in patients 
with urine incontinence.

4:Â€Assess whether the content of the measurement instrument 
corresponds with the construct
Like face validation, content validation is also only based on judgement, 
and no statistical testing is involved. The researchers who developed the 
measurement instrument should have considered relevance and compre-
hensiveness during the development process. However, users of the instru-
ment should always check whether the instrument is sufficiently relevant 
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and comprehensive for what they want to measure. Assessment of content 
validity by the users is particularly important if the measurement instru-
ment is applied in other situations, i.e. another population or purpose than 
for which it was originally developed. For example, we want to measure 
physical functioning in stroke patients, and we find a questionnaire that was 
developed to assess physical functioning in an elderly population. To assess 
the content validity of this questionnaire, we have to judge whether all the 
activities mentioned in this questionnaire are relevant for the stroke popu-
lation, and also to ensure that no important activities for stroke patients are 
missed (i.e. is the instrument comprehensive?). Another example, an accel-
erometer attached to a belt around the hip to measure physical activity may 
adequately detect activities such as walking and running, but may poorly 
detect activities such as cycling, and totally fail to detect activities involving 
only the upper extremities. Therefore, an accelerometer lacks comprehen-
siveness to measure total physical activity.

5:Â€Use a strategy or framework to assess the correspondence  
between the instrument and construct
Although content validation is based on qualitative assessment, some form of 
quantification can be applied. At least the assessment of the content can be 
much more structured than is usually the case. As an example, we present 
the content of a number of questionnaires concerning physical functioning. 
TableÂ€6.1 gives an overview of the items in the domain of ‘physical functioning’ 
in a number of well-known questionnaires. Cieza and Stucki (2005) classified 
the items according to the internal classification of functioning (ICF). In this 
example, the ICF is used as a framework, to compare the content of various 
questionnaires. If we need a questionnaire to measure physical functioning in 
depressive adolescents, the Nottingham Health Profile (NHP) may be the most 
suitable choice, because adolescents have the potential to be very physically 
active. However, for post-stroke patients the Quality of Life-Index (QL-I) may 
be more appropriate, because items concerning self-care and simple activities 
of daily living (I-ADL) are particularly relevant for severely disabled patients.

This type of content analysis is very useful if one wishes to select one meas-
urement instrument that best fits the construct in the context of interest out 
of a large selection of measurement instruments. To use it for content valid-
ation, one should have an idea about what kinds of activities are important.
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6.4â•‡ Criterion validity

Criterion validity is defined by the COSMIN panel as ‘the degree to which 
the scores of a measurement instrument are an adequate reflection of a gold 
standard’ (Mokkink et al., 2010a). This implies that criterion validity can 
only be assessed when a gold standard (i.e. a criterion) is available.

Criterion validity can be subdivided into concurrent validity and pre-
dictive validity. When assessing concurrent validity we consider both the 
score for the measurement and the score for the gold standard at the same 
time, whereas when assessing predictive validity we consider whether the 
measurement instrument predicts the gold standard in the future. It is not 
surprising that the latter validation is often used for instruments to be used 
in predictive applications, while concurrent validity is usually assessed for 
instruments to be used for evaluative and diagnostic purposes. In case of 

Table 6.1â•‡ General health status measurement instrumentsÂ€– frequencies showing 
how often the activities-and-participation categories were addressed in different 
instruments. Adapted from Cieza and Stucki (2005), with permission

Content comparison

ICF categorya QL-I WHO DASII NHP SF-36

d450 Walking 1
d4500 Walking short distances 1
d4501 Walking long distances 1 2
d455 Moving around 2
d4551 Climbing 2
d510 Washing oneself 1 1 1
d530 Toileting 1
d540 Dressing 1 1 1 1
d550 Eating 1 1
d6309 Preparing meals, unspecified 1
d640 Doing housework 1 1 1 2
d6509 Caring for household objects 1

aâ•‡ The numbers correspond to various disability (d) categories in the ICF classification.
ICF, International Classification of Functioning; QL-I, Quality of Life-Index; WHO 
DASII, World Health Organization Disability Assessment Schedule; NHP, Nottingham 
Health Profile.
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concurrent validity and predictive validity, there is usually only one hypoth-
esis that is not clearly stated but rather implicit. This hypothesis is that the 
measurement instrument under study is as good as the gold standard. In 
practice, the essential question is whether the instrument under study is suf-
ficiently valid for its clinical purpose. It is not possible to provide uniform 
criteria to determine whether an instrument is sufficiently valid for applica-
tion in a given situation, because this depends on the weighing of a num-
ber of consequences of applying the measurement instrument instead of the 
gold standard. These consequences include not only the costs and burden 
of the gold standard versus those of the measurement instrument, but also 
the consequences of false positive and false negative classifications resulting 
from the measurement instrument.

The general design of criterion-related validation consists of the following 
steps:

(1)	 identify a suitable criterion and method of measurement
(2)	 identify an appropriate sample of the target population in which the 

measurement instrument will ultimately be used
(3)	 define a priori the required level of agreement between measurement 

instrument and criterion
(4)	 obtain the scores for the measurement instrument and the gold stand-

ard, independently from each other
(5)	 determine the strength of the relationship between the instrument 

scores and criterion scores.

1: Identify a suitable criterion and method of measurement
The gold standard is considered to represent the true state of the construct 
of interest. In medicine, this will usually be a disease status or a measure of 
the severity of a disease, if the instrument is used to measure at ordinal level 
or interval level. In theory, the gold standard is a perfectly valid assessment. 
However, a perfect gold standard seldom exists in practice. It is usually a 
measurement instrument for the construct under study, which is regarded 
as ideal by experts in the field, i.e. a measurement instrument that has been 
accepted as a gold standard by experts. For example, the gold standard used 
to identify cancer is usually based on histological findings in the tissues, 
extracted by biopsy or surgery.
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PROs, which often focus on subjective perceptions and opinions, almost 
always lack a gold standard. An exception is a situation in which we want 
to develop a shorter questionnaire for a construct, when a long version 
already exists. In that case, one might consider the long version as the gold 
standard.

To be able to assess the adequateness of the gold standard, it is import-
ant that researchers provide information about the validity and reliability of 
the measurement instrument, that is used as gold standard. For example, a 
histological diagnosis can only be considered to be a gold standard for can-
cer, if the reliability of assessment has been shown to be high.

2: Identify an appropriate sample of the target population in which the 
measurement instrument will ultimately be used
As discussed previously in Section 6.2, for all types of validation the instru-
ment should be validated for the target population and situation in which 
it will be used. For example, if we are interested in the validity of the scores 
of a measurement instrument in routine clinical care, it is important that in 
the validation study the measurements are performed in the same way as 
in routine clinical care (i.e. without involvement of experts or any special 
attention being paid to the quality of measurements, as is usually the case in 
a research setting).

3: Define a priori the required level of agreement between measurement 
instrument and criterion
In criterion validation, there is usually one implicit hypothesis that the 
measurement instrument should be as good as the gold standard. Therefore, 
most studies on criterion validity lack a hypothesis specifying the extent of 
agreement. Quite often, the conclusion is that the agreement is not opti-
mal, but sufficient for its purpose. However, it is better to decide a priori 
which level of agreement one considers acceptable. This makes it possible to 
draw firm conclusions afterwards, and certainly prevents one from drawing 
positive conclusions on the basis of non-convincing data (e.g. being satis-
fied with a correlation of 0.3 for scores on instruments that measure similar 
constructs).

When formulating hypotheses, the unreliability of measurements must 
be taken into account. Suppose that the comparison test is not a perfect gold 
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standard, and has a reliability (Rel [Y]) of 0.95 and the measurement instru-
ment under study has a reliability (Rel [X]) of 0.70. In that case, the observed 
correlation of the measurement instrument with the gold standard cannot 
be expected to be more than √(Rel [Y] × Rel [X]) = √(0.95 × 0.70) = 0.82 
(Lord and Novick, 1968).

It is difficult to provide criteria for the level of agreement between the 
scores of the measurement instrument and the gold standard that is consid-
ered acceptable, because this totally depends on the situation. Correlations 
above 0.7 are sometimes reported to be acceptable, analogous to ICCs 
of 0.70 and higher, which are considered as good reliability. Acceptable 
values for sensitivity, specificity and predictive values also depend on 
the situation, and on the clinical consequences of positive and negative 
misclassifications.

4: Obtain the scores for the measurement instrument and the gold 
standard,Â€independently from each other
Independent application of the measurement instrument and the gold 
standard is a well-known requirement for diagnostic studies, but this is also 
necessary for the validation of measurement instruments. Moreover, the 
measurement instrument should not be part of the gold standard, or influ-
ence it in any way. This could happen if the gold standard is based on expert 
opinion, as sometimes occurs in diagnostic studies. In that case, the meas-
urement instrument under study should not be part of the information on 
which the expert opinion is based. In the situation in which a short version 
of a questionnaire is validated against the original long version, the scores 
for each instrument should be collected independently from each other. The 
assignments at the end of this chapter include an example of such a criterion 
validation study.

5: Determine the strength of the relationship between the instrument 
scoresÂ€and criterion scores
To assess criterion validity, the scores from the measurement instrument 
to be validated are compared with the scores obtained from the gold 
standard. Table 6.2 gives an overview of the statistical parameters used 
at various measurement levels of gold standard and measurement instru-
ments. If both the gold standard and the measurement instrument under 
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study have a dichotomous outcome, which is often the case with diag-
nostic measurement instruments, the criterion validity of the instrument, 
also referred to as the diagnostic accuracy, is expressed in sensitivity and 
specificity. If the measurement instrument has an ordinal or continuous 
scale, receiver operating characteristic curves (ROCs) are adequate. If the 
gold standard is a continuous variable, criterion validity can be assessed 
by calculating correlation coefficients. If the measurement instrument 
and the gold standard are expressed in the same units, Bland and Altman 
plots and ICCs can be used. Analyses with the gold standard as an ordinal 
variable do not often occur. The gold standard’s ordinal scale is usually 
either considered as a continuous variable, or classes are combined to 
make it a dichotomous instrument.

In a number of examples, using different measurement levels, we will 
show the assessment of concurrent (Section 6.4.1) and predictive validity 
(Section 6.4.2). Note that Table 6.2 applies to both concurrent and predict-
ive validity.

Table 6.2â•‡ Overview of statistical parameters for various levels of measurement for 
the gold standard and measurement instrument under study

Level of measurement Same units Statistical parameter

Gold standard
Measurement 
instrument

Dichotomous Dichotomous Yes Sensitivity and specificity
Ordinal NA ROC
Continuous NA ROC

Ordinal Ordinal Yes Weighted kappa
No Spearman’s ra or other 

measures of association
Continuous NA ROCsb/Spearman’s r

Continuous Continuous Yes Bland and Altman limits of 
agreement or ICCc

  No Spearman’s r or Pearson’s r

aâ•›r = correlation coefficient; bâ•›ROCs:Â€for an ordinal gold standard a set of ROCs may 
be used, dichotomizing the instrument by the various cut-off points; câ•›ICC, intraclass 
correlation coefficient; NA, not applicable.
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6.4.1â•‡ Concurrent validity
Example of concurrent validity (dichotomous outcome)
Lehman et al. (2007) determined the diagnostic accuracy of MRI for the 
detection of breast cancer in the contralateral breast of a woman who had 
just been diagnosed with cancer in the other breast. This means that MRI 
was tested in a situation in which no abnormalities were found by mam-
mography and clinical examination of the contralateral breast. MRI is the 
measurement instrument under study, scored according to the standard 
procedure. The gold standard, based on the clinical course, was considered 
to be positive for cancer if there was histological evidence of invasive carcin-
oma or ductal carcinoma in situ within 1 year after the MRI, and negative 
for cancer if the study records, including the 1-year follow-up, contained 
no diagnosis of cancer. The primary aim of the study was to determine the 
number of cases with contralateral cancer that could be detected by MRI in 
women with recently diagnosed unilateral cancer. However, we use these 
data to validate the MRI scores in a situation in which no abnormalities 
were found by mammography and clinical examination of the contralateral 
breast. Table 6.3 shows the 2 × 2 table of the MRI results and the presence of 
breast cancer according to the gold standard.

According to the gold standard, 3.4% (33 of 969) of the women had breast 
cancer. Sensitivity and specificity are often used as parameters, in case of 
a dichotomous gold standard. Note that the gold standard, being perfectly 
valid, has a sensitivity of 100% (i.e. it identifies all individuals with the Â�target 
condition and does not produce any false-negative results) and a specificity 
of 100% (i.e. it correctly classifies all individuals without the target condi-
tion and does not produce any false-positive results). Validating the MRI 
scores against this gold standard, the sensitivity of the MRI was 90.9% (TP/
[TPÂ€+ FN] = 30/33) and its specificity was 87.8% (TN/[FP + TN] = 822/936). 
However, when one has to decide whether the instrument under study is 
sufficiently valid for its clinical purpose, other diagnostic parameters, such 
as predictive values, are more informative. The positive predictive value is 
defined as the proportion of patients with a positive test result (MRI+) who 
have cancer according to the gold standard. The positive predictive value 
was 20.8% (TP/[TP + FP] = 30/144) in this example, and the negative pre-
dictive value (i.e. the proportion of negative test results without cancer) was 
99.6% (TN/[FN + TN] = 822/825). This means that when no abnormalities 
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are observed on the scan, it is almost certain there is no cancer in the contra-
lateral breast. However, if abnormalities are observed on the MRI, the prob-
ability that this is breast cancer is 20.8%, and 79.2% of the positive MRI scans 
are false positive results. This implies that when the MRI scan is made of the 
contralateral breast of all patients who have been diagnosed with breast can-
cer, a large number of results will be false positive.

In the same study, doctors were also asked to score the MRI results on 
a five-point malignancy scale, with a score of 1 indicating ‘definitively not 
malignant’ and a score of 5 indicating ‘definitely malignant’. Figure 6.1 shows 
the ROC curve, in which each dot represents the sensitivity and 1-specificity 
when points 1–5 are taken as cut-off points. After fitting a curve through 
these points, it is possible to calculate the area under the curve (AUC), 
which amounted to 0.94 in this study. An AUC has a maximum value of 1.0, 
which is reached if the curve lies in the upper left-hand corner; a value of 
0.5, represented by the diagonal, means that the measurement instrument 
can not distinguish between subjects with and without the target condition. 
Although the researchers did not specify beforehand which values of the 
assessed diagnostic parameters they would consider acceptable, they con-
cluded that a measurement instrument with an AUC of 0.94 could be con-
sidered to be highly valid for its purpose.

This is an example of concurrent validity (as opposed to predictive val-
idity), because the cancer is assumed to be present at the time when the 
MRI was made. It is only the procedure of verification that takes time, and 
for that reason the researchers decided to look at the available evidence for 
the presence of histologically confirmed breast cancer during a period of 1 

Table 6.3â•‡ Cross-tabulation of the MRI results and gold standard

MRI results
Gold standard
Breast cancer

Gold standard
No breast cancer

MRI+ 30 (TP) 114 (FP) 144
MRI– 3 (FN) 822 (TN) 825

33 936 969

TP, true positive; FP, false positive; FN, false negative; TN, true negative.
Adapted from Lehman et al. (2007), with permission.
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year. Note that in diagnostic research, clinical course is often used as a gold 
Â�standard for the verification of negative test results.

Example of concurrent validity (continuous outcome)
Hustvedt et al. (2008) assessed the validity of an ambulant activity monitor 
(ActiReg®) for the measurement of total energy expenditure (TEE) in obese 
adults. A doubly labelled water (DLW) method was considered to be the gold 
standard for the assessment of TEE. ActiReg® is an instrument that uses com-
bined recordings of body position and motion to calculate energy expend-
iture (EE). To calculate the TEE, a value for the resting metabolic rate (RMR) 
should be added to the EE. So, TEE = EE + RMR. RMR was measured by 
indirect calorimetry. As TEE is a continuous variable, and expressed in mega-
joules (MJ:Â€1 MJ = 1000 kilojoules) per day by both the activity monitor and 
the gold standard (DLW), it is possible to assess the agreement between the 
two methods with the Bland and Altman method. To do this, the difference 
between the calculated TEE based on ActiReg® (TEEAR) and TEE measured 
by the DLW technique (TEEDLW) is plotted against the mean of these values.

TEE was measured with the DLW method for a period of 14 days in 50 
obese men and women (BMI ≥ 30 kg/m2). Recordings were obtained from 
the activity monitor for 7 days during the same period. Because EE may 
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Figure 6.1	 ROC curve for MRI results as ordinal variable. Lehman et al. (2007), with permis-
sion. All rights reserved.
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disproportionately increase in obese subjects during weight-bearing activ-
ities, a new set of physical activity ratios were established to calculate EE on 
the basis of the activity monitor. Figure 6.2 shows the Bland and Altman plot 
for the TEE, as measured with the activity monitor and the DLW method.

The mean TEE, according to the DLW, was 13.94 (standard deviation [SD] 
2.47) MJ/day, and the mean TEE based on data from the activity monitor and 
the RMR was 13.39 (SD 2.26). This resulted in a mean difference, and thus 
consistent underestimation of 0.55 MJ/day (95% CI 0.13–0.98 (PÂ€<Â€0.012)) 
of the activity monitor results (i.e. 3.9%). The Bland and Altman plot shows 
this slight underestimation, and that the limits of agreement areÂ€ –3.47 to 
2.37 MJ/day. The researchers conclude that, despite the slight underestima-
tion, the activity monitor can be used to measure TEE in obese subjects, if an 
increase in their EE during weight-bearing activities is taken into account.

6.4.2â•‡ Predictive validity
An example of a study on predictive validity can be found in the field of 
heart surgery. The European System for Cardiac Operative Risk Evaluation 
(EuroSCORE) was developed to predict ‘in-hospital’ mortality in patients 
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Figure 6.2	 Bland and Altman plot of total energy expenditure measured with the doubly 
labelled water method and the activity monitor. Hustvedt et al. (2008), with 
permission.

 

 

 



Validity168

undergoing open heart surgery, and has been validated to predict ‘in-hospi-
tal’ mortality of 1173 patients undergoing percutaneous myocardial revas-
cularization (Romagnoli et al., 2009). The EuroSCORE is based on weighted, 
patient-related, cardiac-related and procedure-related risk factors, express-
ing the probability of ‘in-hospital’ mortality. It is a continuous variable with 
a range from 0 to 100%. The EuroSCORE appeared to be an independent 
predictor of mortality, in addition to other predictors of outcome. The per-
formance of the EuroSCORE was presented in a ROC graph, in which the 
AUC was 0.91 (95% CI:Â€0.86–0.97) (see Figure 6.3). The researchers con-
clude that the EuroSCORE is a good predictor of ‘in-hospital’ mortality 
after percutaneous myocardial revascularization. The figure also shows that 
the EuroSCORE was not able to predict procedure-related failure during 
surgery.

The predictive validity of a measurement instrument should be assessed in 
a different sample from the one in which it has been developed. Risk scores 
or prognostic instruments are often constructed in regression analyses in a 
large data set, and are constructed in such a way that they fit the data best. 
Therefore, they may be rather optimistic. Although there are methods that 
can be used to adjust for optimism, it is better to determine the predictive 
validity in another, but similar sample of the target population.
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Figure 6.3	 ROC curves showing the sensitivity and 1-specificity of prediction of in-hospital 
mortality and procedure-related failure for the EuroSCORE risk algorithm. 
Reproduced from Romagnoli et al. (2009), with permission from BMJ Publishing 
Group Ltd.
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In this example, the predictive validity is expressed as the area under a 
ROC curve. However, for clinical use it is important to decide about a cut-
off point for the measurement instrument above which patients are con-
sidered a high-risk group. Ideally, this should be done before the validation 
study commences. Romagnoli et al. (2009) suggested a cut-off point of 6, 
which is the same cut-off point used in open heart surgery. This cut-off also 
appeared to be suitable for the new target population.

6.5â•‡ Construct validity

In situations in which a gold standard is lacking, construct validation should 
be used to provide evidence of validity. Construct validity was defined by 
the COSMIN panel, as the degree to which the scores of a measurement 
instrument are consistent with hypotheses, e.g. with regard to internal 
relationships, relationships with scores of other instruments or differences 
between relevant groups (Mokkink et al., 2010a). It is based on the assump-
tion that the measurement instrument validly measures the construct to be 
measured. Construct validation is often considered to be less powerful than 
criterion validation. However, with strong theories and specific and chal-
lenging hypotheses, it is possible to acquire substantial evidence that the 
measurement instrument is measuring what it purports to measure. There 
are three aspects of construct validity:Â€structural validity, hypotheses testing 
and cross-cultural validity. We will start with structural validity, because we 
first have to determine whether a construct exists of one or more dimen-
sions, as this has to be taken into account in further hypothesis testing.

6.5.1â•‡ Structural validity
Structural validity is defined as ‘the degree to which the scores of a meas-
urement instrument are an adequate reflection of the dimensionality of the 
construct to be measured’ (Mokkink et al., 2010a). This can be assessed by 
factor analysis. In Chapter 4, we explained the difference between explora-
tory and confirmatory factor analysisÂ€ – the first method being applied if 
there are no clear ideas about the number and types of dimensions, and the 
latter if a priori hypotheses about dimensions of the construct are available, 
based on theory or previous analyses. Therefore, for validation purposes, 
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confirmatory factor analysis is more appropriate. Nevertheless, exploratory 
factor analysis is often performed when confirmatory factor analysis (i.e. 
confirmation of the existence of predefined dimensions) would have been 
more adequate (De Vet et al., 2005). In a confirmatory analysis, fit-param-
eters are used to test whether the data fit the hypothesized factor structure. 
In addition, it is possible to test whether the proposed model is better than 
alternative models. An example will illustrate how this works.

Example of confirmatory factor analysis
The example concerns the validation of the Center of Epidemiological 
Studies Depression Scale (CES-D) in patients with systemic sclerosis (SSc). 
SSc or scleroderma is a chronic, multisystem disorder of connective tis-
sue characterized by thickening and fibrosis of the skin, and by involve-
ment of internal organs. Patients with SSc report high levels of pain, fatigue 
and disability. The CES-D is a widely used 20-item self-report measure that 
was originally developed for assessing depressive symptoms in the general 
population, consisting of four factors:Â€depressive affect symptoms (seven 
items), somatic/vegetative symptoms (seven items), (lack of) positive affect 
symptoms (four items) and interpersonal symptoms (two items). The fre-
quency of occurrence of symptoms is rated on a 0–3 Likert scale ranging 
from ‘rarely or none of the time’ to ‘most of the time’, resulting in a scale 
from 0 to 60. Thombs etÂ€ al. (2008) used confirmatory factor analysis to 
examine the validity of the CES-D in 470 patients with SSc by hypothe-
sizing that the four-factor model (see FigureÂ€ 6.4) has an adequate fit in 
these patients, and performs well in comparison with other possible factor 
solutions.

They tested various models as depicted in Table 6.4, a one- and two-factor 
model, two three-factor models, and two four-factor models. To assess the fit 
of the models to the data, chi-square tests for fit are highly sensitive to sam-
ple size and can lead to rejection of well-fitting models. Therefore, to evalu-
ate model fit:Â€the comparative fit index (CFI), the root mean square error of 
approximation (RMSEA) and the standardized root mean square residual 
(SRMR) were used. Guidelines proposed by Hu and Bentler (1999) suggest 
that models with CFI close to 0.95 or higher, RMSEA close to 0.06 or lower, 
and SRMR close to 0.08 or lower are representative of good-fitting models. 
From Table 6.4, showing the fit indices, it appears that the four-factor model 
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(model 4A) has adequate fit indices, also in comparison with the others, 
implying that the CES-D consists of four different domains. In addition, 
it was tested whether a model containing a second-order factor, which we 
labelled as ‘depressive symptoms’, would also fit. A second-order factor is 
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Figure 6.4	 Second-order factor model with the domains depressed affect (DA), somatic/
vegetative affect (S/V), positive affect (PA) and interpersonal (IP). Thombs et al. 
(2008), with permission.
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a factor based on the scores of the four underlying factors as depicted in 
Figure 6.4. This model 4B also showed adequate fit indices.

This confirmatory factor analysis shows that the a priori hypothesized 
four-factor structure has an adequate fit. This analysis of structural validity 
gives evidence that CES-D adequately reflects the dimensionality of the con-
struct depression in SSc patients. The four-factor model holds (model 4A) 
and the scores of the four factors can be combined in one overall score for 
depression (model 4B).

6.5.2â•‡ Hypotheses testing
The basic principle of construct validation is that hypotheses are formu-
lated about the relationships of scores on the instrument under study with 
scores on other instruments measuring similar or dissimilar constructs, or 
differences in the instrument scores between subgroups of patients. These 
hypotheses have then to be tested. Although evidence for construct valid-
ity is typically assembled through a series of studies, the process generally 
consists of the following steps:

(1)	 describe the construct to be measured in as much detail as possible, 
preferably with the conceptual model on which it is based

(2)	 formulate hypotheses about expected relationships with measurement 
instruments assessing related constructs or unrelated constructs, or 
with respect to expected differences between subgroups of patients

Table 6.4â•‡ Fit indices for confirmatory factor analysis models

Model fit indices CFI RMSEA SRMR

Model 1:Â€1 factor 0.70 0.19 0.14
Model 2:Â€2 factor (DA + S/V + IP, PA) 0.95 0.08 0.06
Model 3A:Â€3 factor (DA + S/V, PA, IP) 0.96 0.07 0.06
Model 3B:Â€3 factor (DA + PA, S/V, IP) 0.73 0.19 0.13
Model 4A:Â€4 factor (DA, S/V, IP, PA) 0.97 0.06 0.05
Model 4B:Â€4 factor, second-order (DA, S/V, IP, PA) 0.97 0.06 0.06

CFI, comparative fit index; RMSEA, root mean square error of approximation; SRMR, 
standardized root mean square residual.
Adapted from Thombs et al. (2008), with permission.
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(3)	 describe the measurement instruments with which the measurement 
instrument under study is compared, in terms of the constructs they 
measure, and present data about their measurement properties. In add-
ition, describe the characteristics of the subgroups to be discriminated

(4)	 gather empirical data that will permit the hypotheses to be tested
(5)	 assess whether the results are consistent with the hypotheses
(6)	 discuss the extent to which the observed findings could be explained 

by rival theories or alternative explanations (and eliminate these if 
possible)

1:Â€Describe the construct
A detailed description of the construct to be measured (see Chapter 3, 
Section 3.2), preferably embedded in a conceptual model, is the start-
ing point for construct validation. This is indispensable in order to assess 
whether a chosen measurement instrument validly measures the construct 
of interest.

2:Â€Formulate hypotheses
Based on this conceptual model or theories about the construct, hypoth-
eses can be formulated with regard to expected relationships with instru-
ments measuring related constructs. Researchers often think, in the first 
place, about positive correlations with similar constructs (convergent valid-
ity). However, part of the definition of the construct may contain statements 
about what the construct of interest is not. For example, if the researchers 
want a measurement instrument to measure physical functioning, and not 
pain, then the hypothesis could be formulated that the measurement instru-
ment should have no correlation, or only a slight correlation with meas-
urement instruments that measure pain (discriminant validity). Another 
type of hypotheses concerns expected differences between subgroups of 
patients. If a measurement instrument is intended to measure depression, 
it should be able to differentiate between patients with mild, moderate and 
severe depression (known group or discriminative validity). For this pur-
pose, mean scores on the measurement instrument for the subgroups are 
usually compared.

The hypotheses should be formulated in advance, i.e. before data collection 
commences. The specific expectations with regard to certain relationships 
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can be based either on an underlying conceptual model, or on data in the 
literature. It is important to report the hypotheses together with their justi-
fication in the publication, to enable the readers to judge the plausibility of 
the hypotheses.

The hypotheses should be as specific as possible, i.e. not only the dir-
ection of the correlation or difference should be given, but also the mag-
nitude. For instance, a statement that the new instrument to measure 
‘physical functioning in the elderly’ should correlate with other measures 
of physical functioning is too vague. Looking at the content of the measure-
ment instruments in Table 6.1, one could hypothesize that the new instru-
ment has a 0.1 higher correlation with the QL-I Spitzer scale than with the 
NHP, because the QL-I Spitzer contains more activities that elderly people 
tend to perform.

3:Â€Describe the comparable measurement instruments or subgroupsÂ€to 
be discriminated
It is important to present details about the other measurement instru-
ments, to which the new measurement instrument is related, in terms of 
the construct(s) they measure and their measurement properties. To assess 
their similarity or dissimilarity, one must have insight into the content of 
these comparable measurement instruments. In addition, there should be 
a description of what is known about the validity and other measurement 
properties of these instruments in the specific situation under study. This 
part of the validation study is often taken too easily. There should at least be 
references to papers describing the content and measurement properties of 
these instruments in the same target population.

When hypotheses are formulated about differences between known 
groups, details about the demographic, clinical and other relevant charac-
teristics of these groups should be presented.

4:Â€Gather empirical data
This is a straightforward step. However, attention must be paid to the popula-
tion and situation in which these data are collected. Validation is dependent 
on these issues, so the study sample and situation should be representative of 
the target population and conditions in which the measurement instrument 
will be used.
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5:Â€Assess whether the results are consistent with the hypotheses
This step should also be straightforward if the previous steps have been per-
formed correctly, in which case it is just a matter of counting how many 
hypotheses were confirmed and how many were rejected. However, if the 
hypotheses were vaguely formulated, this step becomes problematic. Can 
one say that a correlation coefficient of 0.35 is moderate, and can one con-
clude that subgroups have a different mean value, if this difference did not 
reach statistical significance in a small study? So, defining explicitly before-
hand the correlations and magnitude of differences one considers accept-
able, will prevent the need for these post-hoc, data-dependent decisions.

6:Â€Explain the observed findings
In the discussion section of a publication describing a validation study, one 
often finds many explanations why the hypotheses were not confirmed. 
Quite often, the construct and the hypotheses are debatable. There seldom 
is a firm conclusion about the lack of validity for this situation, which is 
the only acceptable explanation if the construct and hypotheses were well 
thought out. As we will see in the examples, weak theories and hypotheses 
leave much room for discussion and alternative explanations. Only valid-
ation studies with explicitly defined constructs, and hypotheses based on 
theory or literature findings, make it possible to draw firm conclusions about 
the (lack of) construct validity of the scores of a measurement instrument.

Example of discriminative validation
In Chapter 3 (Section 3.6.2) we introduced a stool chart as an instrument to 
characterize faecal output (Whelan et al., 2004). This stool chart combines 
the consistency and weight of the faeces into a score, and together with the 
frequency of faecal output, this is expressed in a faecal score. The stool chart 
consisted of a visual representation of faecal output, using three weight cat-
egories (<â•›100 g, 100–200 g, >â•›200 g) and four consistency categories (hard 
and formed, soft and formed, loose and unformed, liquid). To validate the 
stool chart, the researchers used data from 36 patients who they measured 
over several days, resulting in data on 171 patient-days. They hypothesized 
that both the frequency and weights of the faeces were higher, and the con-
sistency was less formed, resulting in a higher faecal score for the follow-
ing subgroups:Â€patients with a positive Clostridium difficile toxin compared 
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with patients with a negative assay; patients receiving antibiotics compared 
withÂ€patients not receiving antibiotics; patients with severe hypoalbuminae-
mia (≤â•›20 g/l) compared with patients with no severe hypoalbuminaemia 
(>â•›20 g/l); and patients on an intensive therapy unit (ITU) compared with 
patients not on an ITU (Whelan et al., 2004). The researchers did not spe-
cify the magnitude of the differences. Figure 6.5 shows the distribution of 
the faecal scores for the various groups. As the differences between the sub-
groups were statistically significant, the authors concluded that the daily fae-
cal score using the stool chart showed good construct validity.

Example of convergent, discriminant and discriminative validation
Another example concerns the validation of a number of health status 
questionnaires that are used to assess children with acute otitis media 
(AOM), which is a common childhood infection. Repetitive episodes of 
pain, fever and general illness during acute ear infections, as well as wor-
ries about potential hearing loss and disturbed language development, 
may all compromise the quality of life of the child and its family. Brouwer 
et al. (2007) validated a number of generic questionnaires and disease-
specific questionnaires that have been used to assess functional health 
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Figure 6.5	 Daily faecal scores showing comparison between different patient groups (the 
bold line indicates the median faecal score and the box the interquartile range). 
Reprinted by permission from Macmillan Publishers Ltd:Â€Whelan et al. (2004).
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status in children with AOM. They analysed data of 383 children, aged 1–7 
years. The generic questionnaires were the RAND SF-36, the Functional 
Status Questionnaire (FSQ) Generic, measuring age appropriate func-
tioning and emotional behaviour, and the FSQ Specific, measuring gen-
eral impact of illness on functioning and behaviour. The disease-specific 
questionnaires for otitis media were the Otitis Media-6 (OM-6), assessing 
physical functioning, hearing loss, speech impairment, emotional distress, 
activity limitations and caregivers concern, a numerical rating scale (NRS) 
to assess health-related quality of life (HRQL) of the child (reported by 
the caregiver), an NRS to assess the HRQL of the caregiver, and a Family 
Functioning Questionnaire (FFQ).

They formulated, among other things, the following hypotheses with 
regard to correlations between various measurement instruments (conver-
gent and discriminant validity):

The correlation between the FSQ Generic and the NRS caregiver was pre-•	
dicted to be weak (r = 0.1–0.3), as they were expected to assess two differ-
ent constructs.
Moderate to strong correlations (•	 r >â•›0.40) were expected between the 
RAND SF-36 and the NRS caregiver.
Moderate to strong correlations were also expected between the OM-6 •	
and the FSQ specific, the NRS child (reported by the caregiver), the NRS 
caregiver and the FFQ, because they all assessed OM-related HRQL or 
functional health status.

Table 6.5 shows the correlations between the various questionnaires. The 
correlations that were expected on the basis of the hypotheses are printed in 
bold. It can be seen that the NRS child does not perform as hypothesized, 
and the NRS caregiver shows a lower correlation than was expected with the 
FSQ Specific and the OM-6.

The researchers also formulated a number of hypotheses about the dif-
ferences between known groups:Â€ discriminative validity. They hypoth-
esized that the children with four or more episodes of OM per year (n = 
242) would have lower scores on all the measurement instruments than 
the children with only two or three episodes per year (n = 141). However, 
they did not specify the magnitude of the differences. We see that there 
was a statistical significant difference between the two groups in the scores 
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of all measurement instruments but the NRS child and the NRS caregiver 
(TableÂ€6.6).

The researchers concluded that the global ratings of HRQL (NRS child 
and NRS caregiver) did not perform as well as was expected. These were 
hypothesized to correlate moderately with the ratings of the other disÂ�ease-
specific questionnaires, but the correlations were weak. Moreover, the NRS 
scores could not distinguish between the children with moderate AOM (2–4 
episodes) and serious (≥â•›4 episodes) AOM in the previous year. The results 
of the convergent and discriminative validation support each other. The 
researchers concluded that most of the generic and disease-specific ques-
tionnaires showed adequate construct validity. Only the NRS child and the 
NRS caregiver showed poor convergent validity, and low to moderate dis-
criminative validity.

Note that these researchers validated a number of measurement instru-
ments at the same time, which often happens when there are many exist-
ing instruments to measure the same construct. They do not state, however, 
which measurement instruments they considered to be acceptable to meas-
ure the construct under study, and which they use as standard to validate the 
others against. When validating a measurement instrument using conver-
gent validity, it is always necessary to choose as standard an existing instru-
ment with known validity.

Table 6.5â•‡ Construct validity:Â€correlationsa between the questionnaires

RAND
FSQ 
Generic

FSQ 
Specific OM-6

NRS 
child FFQ

NRS 
caregiver

RAND 1.00 0.52b 0.49 0.34 0.33 0.43 0.49
FSQ Generic 1.00 0.80 0.37 0.25 0.43 0.24
FSQ Specific 1.00 0.49 0.26 0.52 0.24
OM-6 1.00 0.23 0.74 0.28
NRS child 1.00 0.22 0.47
FFQ 1.00 0.39
NRS caregiver 1.00

aâ•›Spearman correlation coefficients were calculated.
bâ•›�Appropriately a priori predicted correlations are bold-printed.
Brouwer et al. (2007), with permission.
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Example of hypotheses testing of the COOP/WONCA scales
The Dartmouth COOP/WONCA charts are intended to measure HRQL of 
patients. Hoopman et al. (2008) validated these COOP/WONCA charts in 
a Turkish and a Moroccan minority population in the Netherlands. They 
hypothesized that the items in the COOP/WONCA charts correlated more 
strongly with conceptually similar scales of the SF-36 than with conceptu-
ally less similar scales. The SF-36 has been found to be a reliable and valid 
instrument for use in such ethnic minority groups. Seven COOP/WONCA 
charts that had corresponding SF-36 scales were selected (SF-Vitality, and 
SF-Role Emotional were excluded). Pearson’s correlation coefficients were 
calculated. They hypothesized that each COOP/WONCA chart should cor-
relate more strongly (at least 0.10) with the corresponding SF-36 scale than 
with the non-corresponding SF-36 scales.

Based on Table 6.7, the researchers concluded that the construct valid-
ity of the COOP/WONCA charts in relation to the SF-36 was good for the 
Turkish group, because 74% (31 of 42) of the correlations were as expected, 
and fairly good for the Moroccan group, because 67% (28 of 42) of the cor-
relations were as expected.

Table 6.6â•‡ Known groups (discriminative validity):Â€scores of children with 2–3 
versus 4 or more episodes of AOM in the previous yeara

2–3 AOM episodes ≥ 4 AOM episodes P valueb

Generic
RAND SF-36 21.1 19.6 0.004
FSQ Generic 76.5 72.2 0.002
FSQ Specific 83.9 78.4 0.001

Disease-specific
OM-6 18.9 17.0 <â•›0.001
NRS child 5.2 5.4 0.48
FFQ 84.9 78.5 <â•›0.001
NRS caregiver 6.6 6.2 0.22

aâ•›�Two to three episodes indicate moderate acute otitis media (AOM), and > 4 episodes 
indicate serious AOM.

bâ•›Calculated by Mann–Whitney test.
Brouwer et al. (2007), with permission.
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This study is an example in which the magnitudes of differences in correla-
tions were quantified in the hypotheses. Quite often though, hypotheses are 
vaguely formulated such as ‘we expect the instrument to be correlated with 
available measurement instruments for the same constructs’. These hypoth-
eses lack sufficient detail. It is more challenging to hypothesize whether 
one expects a moderate or strong correlation, or, for example, correlations 
between 0.3 and 0.6 or between 0.6 and 0.8. Other possibilities are hypoth-
eses that state the researchers expect a stronger correlation with compar-
able instrument A than with comparable instrument B, but quantification 

Table 6.7â•‡ Pearson’s correlations of the COOP/WONCA charts and SF-36 subscales

COOP- 
PF

COOP- 
DA

COOP- 
PA

COOP- 
SA

COOP- 
FE

COOP- 
OH

COOP- 
CH

Turkish (n = 87)
SF-36-PF 0.46 0.56 0.51a 0.37a 0.24a 0.43 0.27a

SF-36-RP 0.35a 0.44 0.44a 0.48a 0.28a 0.48 0.09a

SF-36-BP 0.37 0.60 0.66 0.46a 0.37a 0.43 0.13a

SF-36-SF 0.31a 0.56 0.42a 0.64 0.37a 0.40a 0.06a

SF-36-MH 0.19a 0.61 0.40a 0.52a 0.51 0.43 0.07a

SF-36-GH 0.27a 0.37 0.37a 0.37a 0.47 0.52 0.23a

SF-36-CH 0.06a 0.14a 0.16a 0.05a 0.09a 0.33a 0.53

Moroccans (n = 73)
SF-36-PF 0.44 0.57 0.50a 0.50 0.50a 0.61 0.31a

SF-36-RP 0.37 0.34 0.50a 0.39a 0.31a 0.52 0.22a

SF-36-BP 0.34a 0.39 0.83 0.46 0.48a 0.67 0.37a

SF-36-SF 0.18a 0.34 0.41a 0.49 0.48a 0.48a 0.37a

SF-36-MH 0.22a 0.33 0.38a 0.36a 0.71 0.50 0.34a

SF-36-GH 0.34 0.37 0.53a 0.48 0.37a 0.58 0.28a

SF-36-CH 0.20a 0.32 0.30a 0.18a 0.33a 0.31a 0.51

COOP dimensions:Â€PF, Physical Fitness; DA, Daily Activities; PA, Pain; SA, Social Activities; 
FE,Â€Feelings; OH, Overall Health; CH, Change of Health. SF-36 dimensions (scales):Â€PF, Physical 
Functioning; RP; Physical Role Functioning; BP, Bodily Pain; SF, Social Functioning; MH, Mental 
Health; GH, General Health Perceptions; CH, Change of Health.
aâ•›�The COOP/WONCA chart correlated higher (at least 0.10) with the corresponding SF-36 scale 
(printed in bold) than with the non-corresponding SF-36 scales, as hypothesized.

Hoopman et al. (2008), with permission.
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of the expected correlations and expected differences is highly preferred. 
Statistical significance of the correlation is not useful, for two reasons:Â€first, 
because low correlations can become statistical significant in large popula-
tions, and secondly, the issue is not whether the correlation deviates from 
zero, but whether there is some predefined degree of correlation.

For discriminating validity, hypotheses containing a statement about the 
magnitude of the difference are recommended, and including a require-
ment of statistical significance in the hypotheses can be misleading, as 
small differences can easily reach statistical significance in large studies. 
It is informative to provide box plots, showing minimum and maximum 
values, together with the median value and interquartiles, for differences 
between groups, as in the stool chart example. This facilitates the interpret-
ation of the discriminating potential of a measurement instrument better 
than mean and SD.

This study is also a nice example of a multitrait-multimethod (MTMM) 
approach. The MTMM approach was described by Campbell and Fiske (1959), 
as a validation method, which combines convergent and discriminant validity. 
Hoopman et al. (2008) hypothesized that COOP/WONCA chart items cor-
related more strongly with conceptually similar scales of the SF-36 than with 
conceptually less similar scales. The two methods used in their example to 
measure specific domains of the HRQL were the SF-36 and COOP/WONCA 
instruments. They showed that subscales assessing similar domains measured 
by different methods (COOP/WONCA and SF-36) correlated with each other, 
but less with dissimilar domains (Table 6.6). Thus, they used a combination of 
convergent and discriminant validation. MTMM can be analysed more spe-
cifically using structural equation modelling (Eid et al., 2008).

6.5.3â•‡ Cross-cultural validity
Cross-cultural validity is defined as ‘the degree to which the performance 
of the items on a translated or culturally adapted PRO instrument are an 
adequate reflection of the performance of items in the original version 
of the instrument’ (Mokkink et al., 2010a). This is often assessed after 
the translation of a questionnaire. Apart from differences induced by the 
translations, there may also be differences in cultural issues. Some items 
in a questionnaire may be irrelevant in other cultures. For example, the 
ability to ride a bicycle is very important in the Netherlands, which almost 
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everybody does for short distance transportation, while in the USA, 
Â�cycling is considered as a type of sport, and only a minority of the popula-
tion possesses a bicycle.

Cross-cultural validation starts with an accurate translation process. 
After the translation, or cultural adaptation, the real cross-cultural valid-
ation takes place. In cross-cultural validation, special attention is paid to 
the equivalence of scores in the original and the new target population. For 
this purpose, data from two similar populations are needed:Â€one population 
completes the original version of the questionnaire, and the other popula-
tion completes the new cross-culturally adapted version. Other terms for 
equivalence of scores of measurement instruments are measurement invari-
ance, or differential item functioning (DIF). Measurement invariance means 
that patients or target populations with the same true score on the construct, 
for example with the same severity of a disease, have the same score on the 
measurement instrument. Measurement invariance can be assessed both at 
scale level and at item level. Measurement invariance at item level is also 
known as DIF. This means that there are items for which patients from both 
populations with the same severity of disease do not have the same scores 
on the original and cross-culturally adapted version. In that case, an item 
apparently measures different things in the two populations.

We will first present the steps to be taken in a proper translation of a ques-
tionnaire, followed by assessments of measurement invariance.

6.5.3.1â•‡ The translation process
Essential steps have been pointed out in several guidelines (Beaton 
etÂ€al., 2000). The translation process consists of six steps, as presented in 
FigureÂ€6.6.

Step 1:Â€Forward translation
Two bilingual translators independently translate the questionnaire (i.e. 
instructions, item content and response options are all translated from the 
original language into the target language). The translators should have 
theÂ€target language as the mother tongue. They make a written report of the 
translation containing challenging phrases and uncertainties, and consider-
ations for their decisions. One translator should have expertise on the con-
struct under study, the second one being a language expert, but naive about 
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the topic. These types of expertise are required to obtain equivalence from 
both a topic-specific and language-specific perspective.

Step 2:Â€Synthesis of the forward translation
The two translators and a recording observer (this may be the researcher) 
combine the results of both translations (T1 and T2 into T12), which results 
in one synthesized version of the translation, and a written report carefully 
documenting how they have resolved discrepancies.

Step 3:Â€Back translation
The common translation version (T12) is then translated back into the ori-
ginal language by two other translators with the original language as the 
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Figure 6.6	 Graphic representation of the recommended stages of cross-cultural adaptation. 
Beaton et al. (2000), with permission.
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mother tongue (BT1 and BT2). These are blinded for the original version of 
the questionnaire. These translators are both language experts and are not 
experts on the constructs to be measured. This is recommended because 
experts on the construct under study may know unexpected meanings of the 
items. They have background information about what aspects are relevant, 
while language experts translate the questions in such a way that respond-
ents will probably understand them, thereby increasing the likelihood of 
detecting imperfect translations.

Step 4:Â€Expert committee composes the pre-final version
The expert committee consists of the four translators together with research-
ers, methodologists and health and language professionals. If possible, con-
tact with developers of the original questionnaire is important to check 
whether the items have maintained their intended meaning. The expert 
committee reviews all translations and all reports, takes decisions on all dis-
crepancies and composes a pre-final version. Again, a written report is made 
of all considerations and decisions.

Step 5:Â€Test of the pre-final version
The pre-final version of the questionnaire is completed by a small sample 
of the target population (n = 15–30) for pilot-testing. It is then tested for 
comprehensibility, as described in Section 3.7.1. Special attention should be 
paid to whether respondents interpret the items and responses as intended 
by the developers.

Step 6:Â€Appraisal of the adaptation process by the developers
In the end, it is recommended to send all translations and written reports to 
the original developers of the instrument/questionnaire. They will perform 
a process audit, but they do not adapt the items. After their approval, the 
translated questionnaire is ready for cross-cultural validation.

6.5.3.2â•‡ Cross-cultural validation
The validity of the new, cross-culturally adapted instrument should be 
checked by assessing its construct validity. The researchers might check 
whether the translated instrument shows the expected correlations with 
related constructs, and is able to discriminate between relevant subgroups. 
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In this way, the performance of (sub)scales of the measurement instrument 
can be assessed. This hypotheses-testing becomes stronger if data on the 
same hypotheses in the original population are available. If so, the hypoth-
eses can be formulated quite specifically, so that the same magnitude of cor-
relations and/or differences is to be expected in the new population.

One can expect similar scores if the instrument is used in a similar target 
population. For example, the West Ontario and McMaster University osteo-
arthritis index (WOMAC) is an instrument developed to assess pain and 
physical functioning in patients with osteoarthritis. Patients in Canada and 
the Netherlands who have hip replacement surgery are expected to have about 
the same WOMAC scores 2 weeks after surgery, assuming that health status 
of the patients is comparable 2 weeks post-surgery and that healthcare pro-
vided for these patients is similar in Canada and the Netherlands. However, 
we can never be sure about this. When different mean and standard varia-
tions are found between populations, it is difficult to decide whether this is 
due to differences in the translated measurement instruments or differences 
in the populations. So, this method is sample dependent. Fortunately, there 
are more powerful ways in which to determine equivalence of an instru-
ment’s scores, based on the assessment of measurement invariance.

6.5.3.3â•‡ Assessment of measurement invariance
Measurement invariance means that a measurement instrument, a scale or 
an item functions in exactly the same way in different populations. In that 
case, it does not show DIF. There are several methods that can be used to 
assess measurement invariance (Teresi, 2006). We will present the follow-
ing most commonly used methods in this section:Â€factor analysis, logistic 
regression analysis and item response theory (IRT) techniques.

Factor analysis
Factor analysis is a method often used to assess differences between the ori-
ginal and translated version of a measurement instrument. The principle of 
assessing measurement invariance with factor analysis is that if one or more 
items do not load on the original factor after translation, this indicates that 
these items have a different meaning, either due to the translation, or due to 
cultural differences. In other words, if all items have kept the same meaning 
after translation, we expect the instrument to retain the same factor structure 
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in the new population. As already discussed in Section 6.5.1, confirmatory 
factor analysis is strongly preferred over exploratory factor analysis for val-
idation purposes. In assessing measurement invariance, the factor structure 
of data gathered in both the original and new populations are compared on 
three points (Gregorich, 2006):

(1)	 Are the same factors identified in both populations, and are these fac-
tors associated with the same items across the two populations?

(2)	 Do the factors have the same meanings across the two populations (i.e. 
do the items show the same factor loadings in both populations)?

(3)	 Do the items have the same mean values (intercepts) in both populations?

Examining the factor structure (question 1) is what is normally done in 
a confirmatory factor analysis (CFA), as shown in Section 6.5.1. In multiple 
group factor analysis, the equivalence of the factor loadings (question 2) in 
the two populations can be tested, as well as the equivalence of the inter-
cepts reflecting the item mean scores (question 3). The method of assessing 
equivalence via factor analysis is not sample-dependent, because the fac-
tor loadings can be considered as regression coefficients, which are hardly 
dependent on sample means.

Logistic regression analysis
Logistic regression analysis is an appropriate method for assessing measure-
ment invariance at item level (Petersen et al., 2003). Again, data from two 
populations are needed, one completing the original version of the question-
naire, and the other completing the cross-culturally adapted version. An item 
displays DIF when patients from the two populations with the same ‘true 
value’ on the construct do not have the same probability of endorsing that 
item. According to the classical test theory, the overall scale score is used as an 
indication for this ‘true value’. Uniform and non-uniform DIF can be distin-
guished. Uniform DIF means that in one population an item is endorsed less 
(or more) often at all values of the construct, compared with the other popu-
lation. Non-uniform DIF means that in one population an item is endorsed 
less (or more) often at some values of the construct, but more (or less) often at 
other values of the construct compared with the other population.

In this regression analysis, the item response is the dependent variable, 
and the overall scale score, the dichotomous variable ‘original question-
naire versus translated version’, and an interaction term for ‘questionnaire 
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version’, are the independent variables. When the item response is dichot-
omous, common logistic regression can be used. However, often the item 
response is an ordinal variable, in which case ordinal logistic regression ana-
lysis should be applied. It is possible to detect uniform and non-uniform 
DIF with this method. The interaction represents possible non-uniform DIF 
(i.e. indicating that the magnitude or direction of cultural or language differ-
ences in item scores differs between several ranges of the overall scale score). 
In the absence of non-uniform DIF, uniform DIF is tested by modelling the 
item responses (i.e. the dependent variable) as a function of the ‘question-
naire version’ and the scale score, with the variable ‘questionnaire version’ 
representing possible uniform DIF. Uniform DIF (testing the direction and 
magnitude of cultural/language differences in item scores) is considered to 
be present if the odds ratio (OR) of the variable ‘questionnaire version’ is 
statistically significantly different from 1. However, there are also other cri-
teria:Â€uniform DIF is sometimes considered to be present if the OR of the 
variable ‘questionnaire version’ is outside the interval of 0.53–1.89 (ln(OR) 
numerically larger than 0.64) (Zieky, 1993). And sometimes an increase 
(difference) in Nagelkerke’s R2 of more than 0.03 is used as a criterion to 
indicate noticeable DIF (combined uniform and non-uniform DIF) (Rose 
etÂ€al., 2008). An example may clarify this theoretical presentation of assess-
ing DIF by means of regression analysis.

Example
Hoopman et al. (2006) translated and validated the SF-36 for use among 
Turkish and Moroccan ethnic minority patients with cancer in the 
Netherlands. They compared the data from the Turkish sample (n = 90) and 
the Moroccan sample (n = 79) with those from a previous study of 376 Dutch 
patients with cancer (Aaronson et al., 1998). They first tested for non-uni-
form DIF by modelling the item response as a logit linear (=â•›logistic) func-
tion of the translation (Dutch versus Turkish, or Dutch versus Moroccan), 
the scale score and the interaction between translation and scale score. Non-
uniform DIF was considered to be present if the interaction term was stat-
istically significant at a P value of less than 0.001, and uniform DIF was 
considered to be present if the OR of the variable ‘questionnaire version’ was 
outside the interval of 0.53–1.89 (Zieky, 1993).

Table 6.8 shows the results of the tests for DIF expressed in OR of the vari-
able ‘questionnaire version’ for the Mental Health domain. The item ‘Down 
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in the dumps’ had an OR of 0.28 (0.16–0.50) in the Turkish study sample. 
An OR of 0.28 means that the Turkish sample has a lower score for this 
item at the same level of mental health. The item ‘blue/sad’ had an OR of 
1.98 (1.10–3.56) in the Moroccan study sample, meaning that the Moroccan 
sample scored higher on the item blue/sad than the Dutch sample at the 
same level of mental health. In the case of uniform DIF, this applies to all 
levels of mental health. Non-uniform DIF is indicated by an asterisk. We see 
that the item ‘calm and peaceful’ showed non-uniform DIF, which indicates 
that comparing the score for this item in the Dutch and Turkish samples, 
the differences found vary in magnitude and direction at various levels of 
mental health. We found a negative regression coefficient for the interaction, 
which means that at the higher scores on the ‘Mental Health’ scale the diffe-
rence between the Turkish and Dutch samples will be smaller.

Item response theory techniques
IRT techniques are a powerful method with which to detect DIF, by compar-
ing the item characteristic curves of the items in the original version and the 

Table 6.8â•‡ Results of the tests for uniform and non-uniform DIF by applying 
ordinal logistic regression analysis:Â€OR, (and 95% CI) and P values of the Dutch 
sample versus the Turkish or Moroccan sample (corrected for age, gender and 
stage of disease)

Turkish Moroccan

Odds ratio P value Odds ratio P value

Items in the mental 
health scale
Nervous 0.68 (0.41–1.11) 0.12 1.24 (0.71–2.17) 0.44
Down in the dumps 0.28 (0.16–0.50) <â•›0.001 1.60 (0.86–2.99) 0.14
Calm and peaceful 0.96 (0.94–0.98) <â•›0.001* 1.19 (0.68–2.09) 0.54
Blue/sad 0.60 (0.36–1.01) 0.06 1.98 (1.10–3.56) 0.02
Happy 2.76 (1.64–4.63) <â•›0.001 0.67 (0.38–1.16) 0.15

Uniform DIF for language was considered to be present if the OR was outside the 
interval of 0.53–1.89, and this is presented in bold print. Non-uniform DIF was 
considered to be present if the interaction of languages with the total score was found to 
be statistically significant (Pâ•›<â•›0.001), and is presented in the table with an asterisk.
Hoopman et al. (2006), with permission.
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translated version. Where regression analysis uses the observed score, IRT can 
use the latent score (i.e. the estimated score on the latent trait). In IRT termin-
ology, an item displays DIF when persons from the original and new popula-
tion who have an equal score on the latent trait have a different probability of 
endorsing a specific item when completing the original and translated ques-
tionnaires. In other words, the item characteristic curve of the translated item 
differs from the item characteristic curve of the original item. Uniform DIF 
occurs if an item appears to be easier or more difficult in one of the popula-
tions at all levels of the trait (i.e. item difficulties have changed). Non-uniform 
DIF occurs if one item is easier for the new population, compared with the ori-
ginal population, at one level of the trait, and more difficult at another level of 
the trait (i.e. the item characteristic curves of the item before and after transla-
tion cross each other). In non-uniform DIF, item discrimination has changed. 
Figure 2.6 (Section 2.5.2) represented this situation if we presume that the 
two items depicted there are the same items scored by people from a different 
population. In IRT, interpretation problems due to different sample mean and 
standard deviations can easily be dealt with by calibrating both samples on the 
same trait level, or by using multiple group IRT (Embretson and Reise, 2000). 
The following example presents testing of the equivalence of WOMAC items 
after translation from English into Dutch.

Example
Roorda et al. (2004) translated and performed a cross-cultural validation of 
the original Canadian WOMAC with a Dutch version, using DIF analysis in 
patients with hip osteoarthritis who were waiting for hip replacement sur-
gery. One of the subscales of the WOMAC is a physical functioning scale (17 
items). We will use data from this scale in our example. Using a Rasch rating 
scale model, a mean item difficulty is calculated per polytomous item. The 
calibrated item difficulties, resulting from separate analysis of the Canadian 
and Dutch sample, were plotted against each other, with the Dutch items on 
the y-axis and the English items from the Canadian version on the x-axis 
(Figure 6.7). An identity line was drawn through the origin of the plot with 
a slope of 1. The dotted lines represent the 95% CI to guide interpretation. 
Items that fall outside the dotted lines demonstrate DIF.

For an adequate interpretation, we must remember that the position of 
items on the scales is determined by the ‘probability of a positive response’ 
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(see Section 2.5.2, Figure 2.5). The WOMAC items refer to difficulties when 
performing a number of activities. Items with a high probability of causing 
difficulties are located on the left-hand side of the scale. These items refer to 
heavy activities, which are difficult to perform, and people who are able to 
perform them have a higher level of physical functioning. Items on the right-
hand side of the scale refer to activities that are less difficult to perform, and 
the probability of causing difficulties is lower. Patients experiencing prob-
lems with these light activities have a low level of physical functioning. By 
the same token, items that are very difficult to perform are found at the 
lower end of the y-axis, and items less difficult are found at the higher end of 
the y-axis. Patients with a lower level of physical functioning are located at 
the higher end of the y-axis. We observe that item 20 (getting in/out of the 
bath) was easier for the Dutch population, and item 22 (getting on/off the 
toilet) was easier for the Canadian population. There are several explana-
tions for these DIF findings. They may be due to a poor translation, but there 
are also other explanations. They may be due to differences in the activities 
described in the items. With respect to item 22, the toilets in Canada may be 
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Figure 6.7	 Calibration of physical functioning items for the Dutch WOMAC (y-axis) and the 
Canadian WOMAC (x-axis). Reproduced from Roorda et al. (2004), with permis-
sion from BMJ Publishing Group Ltd.
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higher than the toilets in the Netherlands, thus causing less difficulty. They 
also may be due to cultural or other differences in the population (e.g. the 
Dutch may have longer legs, which makes it more difficult for them to get 
on and off the toilet). However, we must be aware that these DIF tests are 
very sensitive, and in particular, DIFs found in large study samples may be 
statistically significant, but clinically of little relevance.

6.5.3.4â•‡ Dealing with measurement invariance
When some of the translated items turn out to show substantial DIF, we first 
take a look at these items to see whether there is a plausible explanation. That 
is often not the case. When there is DIF, we have the choice to adapt the trans-
lation of these items and test them again in a cross-cultural validation. Most 
often though these items are deleted. When DIF is identified by multiple 
group factor analysis or IRT, it is possible to adapt the model and calculate 
adjusted scores (see Embretson and Reise, 2000 for more details). When DIF 
is identified by logistic regression analysis, this possibility does not exist.

6.6â•‡ Validation in context

At the end of this chapter we will address sample sizes and missing values. 
However, we will also discuss design issues regarding validating measure-
ment instruments along with clinical studies, and about the validity and its 
relation to the purpose of the measurement instrument, accumulation of 
evidence from validation studies, and to reliability and responsiveness.

6.6.1â•‡ Sample sizes
With regard to the sample size for validation studies, for criterion and con-
struct validation studies in which correlation coefficients are calculated, we 
recommend a minimum of 50 patients, but larger samples (e.g. over 100 
patients) are preferred. Criterion validation studies with dichotomized out-
comes require larger samples if there is an uneven distribution over the two 
categories, to avoid small numbers in one of the columns of the 2 × 2 table. 
For known group validation, we recommend a minimum of 50 patients per 
subgroup.

For factor analysis, we already provided a rule of thumb in Chapter 4 
(Section 4.4.5), i.e. a minimum of 4–10 cases per item, but with 100 patients 
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as an absolute minimum. For IRT techniques, many more patients are 
needed, and several hundreds of patients are required to construct stable 
models.

6.6.2â•‡ Missing values
With regard to missing values, as in all research, these should be reported 
and, as far as possible, the reasons for missing values should be investigated. 
In effectiveness studies there may be selective drop-out or loss to follow-up 
related to (lack of) effectiveness, thereby inducing bias. In diagnostic stud-
ies, uninterpretable results or the fact that not all tests are indicated for 
all patients may cause missing values, and may lead to bias. In validation 
research, the relationship between missing values and the outcome of the 
study (e.g. correspondence between the scores of two instruments measur-
ing the same construct) may be less clear-cut, and therefore there is probably 
less potential for bias. However, although missing values are less problem-
atic in validation studies than in diagnostic or effectiveness studies, more 
than 15% of missing values might cause problems with regard to the gener-
alizability of the results to the missing part of the population, especially if 
the reasons for missing values, and therefore the potential of selection bias, 
are unknown.

Note that missing values may occur when a measurement instrument is 
used in another population than for which it was originally developed. This 
may point to items that are not relevant for the new population.

6.6.3â•‡ Validation along clinical studies
As we already saw in Section 6.2, when a new construct is being developed it 
is very difficult to disentangle the theoretical development of the construct 
and validation of the measurement instrument. So, if the hypotheses cannot 
be confirmed by the validation studies, the researchers do not know whether 
there is a critical flaw in the ideas about the construct, in the instrument used 
to measure it, or both. Although this situation is well known in the develop-
ment of new psychological constructs (Strauss and Smith, 2009), it occurs 
in every field of research in which new theories about diseases are being 
developed. This interference of construct and measurement instrument 
validation also occurs when validation takes place during a clinical study, 
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in which case there are two objectives of the study. On the one hand, the 
instrument is used to answer a clinical question, and on the other hand, it is 
used to draw conclusions about the validity of the measurement instrument. 
This can cause problems in the interpretation of the results. For example, see 
the Alzheimer disease (AD) study in Section 3.4.1.4 where Scheltens et al. 
(1992) found that there was white matter involvement in late-onset AD, but 
not in pre-senile onset AD. Suppose that in a subsequent study the research-
ers are interested in finding out whether there is white matter involvement 
in an intermediate-onset AD group (clinical objective), but at the same time 
they want to know whether tiny hyperintensities can be observed on the 
MRI (instrument validation objective). Hence, there are two objectives in 
this study. MRI scans are therefore made of a large number of patients with 
intermediate AD onset. If the researchers observe tiny hyperintensities, they 
will conclude that there is white matter involvement in intermediate AD 
onset, and these hyperintensities can be observed on MRI. However, if they 
do not observe any hyperintensities, they can not draw conclusions about 
either of the two objectives:Â€perhaps there are no hyperintensities in inter-
mediate-onset AD, perhaps they can not be observed on MRI or perhaps 
both of these conclusions are true. This implies that the question whether 
MRI is able to detect tiny hyperintensities can only be assessed in situations 
where it is known, either by using another instrument or by theory, that the 
tiny hyperintensities are truly present.

6.6.4â•‡ Link with new clinical knowledge
In the above example, the purpose of the measurements was to learn more 
about the constructs to be measured, i.e. pathophysiology of AD. As the 
aim of medical research is generally to learn more about the pathophysi-
ology and biological mechanisms of diseases, many measurement instru-
ments are used to improve, extend and broaden our clinical knowledge, 
and the development or refinement of measurement instruments often 
keeps abreast of the clinical development. So, not only in the past, but also 
now and in the future, development of the construct and measurement 
instrument will go hand in hand. However, strong validation studies of the 
measurement instrument can only be performed after the construct has 
been fully developed.
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Stronger validation is also possible when a measurement instrument 
that has shown an acceptable degree of validity in one situation is vali-
dated for another application. The findings of previous validation studies 
can then be used as a basis for hypotheses to assess whether the measure-
ment instrument performs equally well in the new situation. These new 
situations might call for modifications to the measurement instrument (e.g. 
another language, another mode of administration, other response options, 
the addition of extra items, other target populations or other purposes of 
measurement).

6.6.5â•‡ Accumulation of evidence from validation studies
This chapter has shown that there are various types of validation that can be 
used to obtain evidence that a measurement instrument truly measures the 
construct it purports to measure. Face validity or content validity should 
always be assessed. Depending on the availability of a gold standard either 
criterion validation or construct validation can be applied. In case of Â�criterion 
validation, usually one comparison is made. In case of construct validation, 
various forms can be applied:Â€structural validation if it concerns a multidi-
mensional instrument, and in addition as many hypotheses as considered 
relevant can be formulated. Every test of validity and every hypothesis adds 
to the body of evidence with regard to the validity of the instrument in a 
specific context.

6.6.6â•‡ Validity and reliability
Reliability was defined in Chapter 5 as the extent to which scores for 
patients who have not changed are the same for repeated measurements 
under several conditions. Figure 6.8 gives a very simple representation of 
the essentials of validity and reliability. The four boxes in this figure reflect 
various combinations of validity and reliability. The dots represent multiple 
measurements of one patient, and the cross within the circle represents the 
true score:

the dots in cell A correspond to valid and quite reliable scores•	
the dots in cell B correspond to mostly invalid, and definitely unreliable •	
scores

 

 

 

 



6.6â•‡ Validation in context195

the dots in cell C correspond to invalid, but quite reliable scores and•	
the dots in cell D correspond to invalid and unreliable scores•	

In cell B we see that when a measurement does not provide a reliable 
score, a single measurement of this patient is probably not valid, because 
many scores fall outside the circle representing the ‘true’ value. However, 
we have learned in Chapter 5 (Section 5.4.1.2) that by averaging the scores 
of multiple measurements we might come to a more reliable score, and the 
mean score of multiple measurements of this patient in cell B would be valid. 
In Section 5.15, we applied the same reasoning to single scores of patients 
and the average score of the group of patients. In cell D averaging the scores 
of multiple measurements would lead to an invalid result.

We can now say that with regard to the single score, a score that is not 
reliable has a low probability of being valid. However, we can overcome this 
by performing multiple measurements, which will reduce the measurement 
error and produce a valid mean score (either within or over patients).

(a) (b)

(c) (d)

XX

XX

Figure 6.8	 Various combinations of validity and reliability.
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6.6.7â•‡ Validity and responsiveness
In this chapter, we have dealt with the validity of the scores of measure-
ment instruments in various fields and applications. However, one issue that 
has not been discussed so far is the validity of change scores, but we will 
deal with this so-called longitudinal validity or responsiveness in the next 
chapter. Nevertheless, we want to emphasize in this chapter that we consider 
responsiveness as a part of validity. As you will see in Chapter 7, there are 
many similarities between validity and responsiveness. However, apart from 
discussing these similarities, there is much more to be said about respon-
siveness and the ways in which it can be assessed. Therefore, responsiveness 
deserves a separate chapter.

6.7â•‡ Summary

In this chapter, we have explained how various types of validation can be 
used to provide evidence that measurement instruments truly measure the 
constructs that they purport to measure. A good definition of the construct 
to be measured is indispensable for a correct validation, and this definition 
should preferably be embedded in a conceptual model.

Content validation is the start of the validation process; first, a global 
assessment is performed, referred to as face validation, followed by a more 
detailed assessment. Content validity can be clearly described for multi-
item instruments, in which case content validation consists of assessment 
of the relevance and comprehensiveness of all items. However, other meas-
urement instruments also have a phase of content or face validation, in 
order to assess whether they are suitable to measure the construct. For 
example, one should consider whether relevant tissues could be made vis-
ible on MRI.

The next step is criterion validation, which is a powerful step when an 
appropriate gold standard is available. Correspondence of the measurement 
instrument with the gold standard should be determined, followed by a con-
clusion, preferably on the basis of an a priori set level, as to whether this cor-
respondence is acceptable for the purpose of the measurement.

If there is no gold standard, construct validation must provide the evi-
dence. The definition of the construct and underlying conceptual model is 
a good starting point for the generation of hypotheses about the construct. 
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Confirmation of well-considered and specific hypotheses provides more 
evidence than weakly formulated hypotheses. When a large number of 
challenging hypotheses are tested, construct validation becomes a power-
ful tool in the validation process. Specific types of construct validation 
are structural validation and cross-cultural validation. Structural valid-
ation, which can be applied to multi-item instruments, is a strong tool 
if the structure of the instrument can be specified a priori, based on evi-
dence from previous research or on a well-considered development pro-
cess. Confirmatory factor analysis is highly preferred over exploratory 
factor analysis, because it makes it possible to draw firm conclusions 
about whether the items act as expected. If a questionnaire is translated 
or adapted to another culture, cross-cultural validation should be applied. 
Confirmatory factor analysis can be used for this purpose. In addition, 
DIF analysis by logistic regression analysis, and IRT techniques, if applic-
able, are also very suitable to determine whether the items have the same 
meaning after translation.

The validation of a measurement instrument is an ongoing process, 
which usually consists of a combination of various types of validation, 
accumulating evidence when hypotheses that are more specific are 
confirmed.

Assignments

1.â•‡ Validation is a continuous process
Give two reasons why validation is a continuous process.

2.â•‡ Drawing conclusions about construct validity
Suppose, in a validation study of the SF-36 as a measurement instrument 
for assessing general health status, one of the hypotheses is that the overall 
scores on both the physical component scale (PCS) and the mental compo-
nent scale (MCS) show a high correlation (r = 0.6Â€– 0.8) with a global rating 
of the health status on a numerical rating scale of 0–10 points. The results 
show that correlation with the PCS is 0.75, but correlation with the MCS is 
only 0.49. Which of the following conclusions can be drawn from the above 
information?
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(a)	 The MCS scale has insufficient validity in this population.
(b)	 The respondents apparently base their global assessment of general 

health status more on physical aspects than on mental aspects.
(c)	 The SF-36 is focused more on the physical aspects than on the mental 

aspects of general health status.

3.â•‡ Formulation of conclusions about validity
Below you will find the formulation of a number of conclusions that are often 
found in the abstracts of papers reporting on validation studies. Which ones 
do you think are adequate? Explain why the others are inadequate.

(a)	 Instrument X is valid.
(b)	 Instrument X is shown to be valid in this study.
(c)	 Instrument X is shown to have satisfactory construct validity in this 

study, because 80% of the hypotheses were confirmed.
(d)	 Instrument X is shown to be valid in population P.
(e)	 Instrument X is shown to be valid for discriminating between subgroup 

A and subgroup B in population P.
(f)	 Instrument X is shown to have good criterion validity in our  

population P.
(g)	 Instrument X is shown to cover all relevant aspects of the construct.

4.â•‡� Validation of a Short-Form version of the WOMAC versus the Long-Form 
version

Baron et al. (2007) validated a Short-Form (SF) version of the Western Ontario 
and McMaster Universities Osteoarthritis Index (WOMAC) physical func-
tioning subscale in patients with hip and knee osteoarthritis. The Long-Form 
(LF) version of this physical functioning scale consisted of 17 items, and had 
previously been shortened to a version consisting of eight items.

A total of 1036 outpatients with osteoarthritis of the hip or knee partici-
pated in this validation study. They had to rate their pain during movement, 
give a global assessment of disease activity, and rate their impairment in 
physical functioning on a numerical rating scale, with a score ranging from 
0 to 10 (a high score indicating a high level of symptoms). In order to val-
idate the SF version against the LF version, half of the patients completed 
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the LF version of the WOMAC physical functioning scale and the other half 
completed the SF version. In this way, the authors were able to compare the 
SF and LF versions between the two groups, by comparing the mean and 
SDs of both versions (Approach 1). In addition, they extracted the scores for 
the SF version from the half of the population that completed the LF version, 
and compared the scores of the SF and LF version within the same popula-
tion, using the Bland and Altman plot (Approach 2). For both approaches 
the scores of the SF version (range 0–32) and the LF version (range 0–68) 
were transformed to a 0–100 scale to make them comparable.

(a)	 What are the advantages and disadvantages of these two approaches?
(b)	 Explain why they compared mean and SDs in Approach 1 and used a 

Bland and Altman plot in Approach 2.
(c)	 Construct validity was assessed by examining the correlation of the 

WOMAC LF and SF with the measures of pain during movement, 
impairment in physical functioning and global assessment of the dis-
ease activity. They expected these variables to correlate less with the LF 
version than with the SF version (no arguments given). How could you 
make these hypotheses more specific?

5.â•‡� Interpretation of data on measurement invariance (differential item 
functioning)

A cancer-specific quality of life questionnaire was originally developed by the 
European Organization for Research and Treatment of Cancer (the EORTC 
QLQ 30) in English. It has been translated into Danish (DA), Dutch (NL), 
French (FR), German (DE), Italian (IT), Norwegian (NO), Spanish (ES) 
and Swedish (SV). Scott et al. (2009) tested for DIF in various translations. 
They used ordinal logistic regression analysis to test for DIF on the items 
of nine subscales and for the eight different languages. None of the items 
showed non-uniform DIF. Uniform DIF was considered to be present if the 
odds ratio (OR) of the translation term was outside the interval of 0.53–1.89 
(ln(OR) numerically larger than 0.64). They performed separate analyses for 
baseline data, on-treatment data and off-treatment data. Table 6.9 shows the 
results. Uniform DIF is represented by ‘+’ if the new population completing 
the translated version had higher scores, given a similar ‘true’ value based on 
the overall score, and by a ‘–’ if this new population had lower scores.
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Table 6.9â•‡ Summary of uniform DIF results

Scale Item DA NL FR DE IT NO ES SV

QL Q29 ×oo ooo ooo ooo oo× ooo oo× oo×
Q30 ×oo ooo ooo ooo oo× ooo oo× oo×

PF Q1 ××× oo× o–× oo× o×× o×× oo× –××
Q2 ××× oo× oo× oo× o×× o×× oo× o××
Q3 ××× +o× oo× oo× o×× +×× oo× o××
Q4 ××× ––× oo× oo× +×× +×× ––× +××
Q5 ××× oo× oo× oo× o×× o×× oo× o××

RF Q6 ×oo oo+ oo+ oo+ oo× ooo o+× oo×
Q7 ×oo oo– oo– –o– oo× ooo o–× oo×

EF Q21 ooo ooo ooo ooo oo× ooo o+× oo×
Q22 ooo ooo ooo +++ oo× – o oo× oo×
Q23 ooo –oo ooo o–o oo× ooo –× oo×
Q24 ooo oo– ooo ooo oo× +oo oo× ++×

CF Q20 ooo +o+ ooo ooo oo× ooo oo× +o×
Q25 ooo –o– ooo ooo oo× ooo oo× –o×

SF Q26 +++ ooo ooo +++ o+× ooo oo× oo×
Q27 ––– ooo ooo ––– o–× ooo –o× oo×

FA Q10 ooo ooo ooo ooo oo× ooo ––× oo×
Q12 ooo ooo ooo ooo ++× oo+ ++× oo×
Q18 ooo ooo ooo ooo o–× ––– oo× oo×

NV Q14 ooo ooo ooo ooo –o× ooo oo× oo×
Q15 ooo ooo ooo ooo +o× ooo oo× oo×

PA Q9 ooo ooo –o– ––– oo× –o– oo× oo×
Q19 ooo ooo +o+ +++ oo× oo+ oo× oo×

Translations:Â€Danish (DA), Dutch (NL), French (FR), German (DE), Italian (IT), Norwegian (NO), 
Spanish (ES), Swedish (SV). The three symbols in each cell refer to (from left to right):Â€DIF analyses 
at baseline, on-treatment and off-treatment assessments
‘+’ indicates that respondents using that language were more likely to report symptoms for that 
item compared with English and with other items in the same scale (P < 0.001 and ln odds ratio > 
0.64).
‘–’ indicates that respondents using that language were less likely to score highly on that item.
‘o’ indicates there was no statistically significant DIF or that the magnitude of the DIF effect was less 

than 0.64.
‘×’ indicates that DIF analyses were not conducted because of insufficient sample size.
Adapted from Scott et al. (2009), with permission.
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Items Q29 and Q30 were two questions about overall quality of life. These 
showed no DIF for any of the different languages. Item Q22 (Did you worry?) 
had higher scores in Germany, and item Q27 concerning social activities 
was scored lower in Denmark and in Germany. In general, there was good 
consistency between the three time-points, and there were no situations in 
which there was positive and negative DIF on the same item in the same 
population.

(a)	 Explain the meaning of uniform and non-uniform DIF.
(b)	 Why is the assessment of DIF an adequate method with which to valid-

ate an instrument after translation?
(c)	 Explain why the researchers were happy that they did not find a ‘+’ and 

‘–’ in the same cell of their table.
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7

Responsiveness

7.1â•‡ Introduction

The ultimate goal of medicine is to cure patients. Therefore, assessing whether 
the disease status of patients has changed over time is often the most import-
ant objective of measurements in clinical practice and clinical and health 
research. In Section 3.2.3, we stated that we need measurement instruments 
with an evaluative purpose or application to detect changes in health sta-
tus over time. These instruments should be responsive. Responsiveness 
is defined by the COSMIN panel as ‘the ability of an instrument to detect 
change over time in the construct to be measured’ (Mokkink et al., 2010a). 
In essence, when assessing responsiveness the hypothesis is tested that if 
patients change on the construct of interest, their scores on the measure-
ment instrument assessing this construct change accordingly. The approach 
to assess responsiveness is quite similar as for validity, as we will show in this 
chapter. In Section 7.2, we will start by elaborating a bit more on the concept 
of responsiveness. We will discuss the relationship between responsiveness 
and validity, taking responsiveness as an aspect of validity, in a longitudinal 
context. We will also elaborate on the definition of responsiveness and the 
impact of this definition on the assessment of responsiveness.

Subsequently, in Sections 7.3 and 7.4 we will discuss two different 
approaches for assessing responsiveness:Â€ a criterion approach and a con-
struct approach. The criterion approach is appropriate for situations in which 
there is a gold standard for the construct to be measured, and the construct 
approach is appropriate for situations in which there is no gold standard.

In this chapter, we will not only explain how responsiveness should be 
assessed, but also how it should not be assessed because there is much con-
fusion about responsiveness in the literature. In Section 7.5 we will discuss 
some, in our opinion, inappropriate alternative measures, that are frequently 
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used to assess responsiveness. We will explain why we consider these meas-
ures inappropriate in most situations. Several examples from different med-
ical disciplines will be presented throughout the chapter.

Note that responsiveness is only relevant for measurement instruments 
used in evaluative applications (i.e. when the instrument is used in a longi-
tudinal study to measure change over time). If an instrument is only used for 
discriminating between patients at one point in time, then responsiveness is 
not an issue.

7.2â•‡ The concept of responsiveness

7.2.1â•‡ Responsiveness as an aspect of validity
During the nineteen seventies and eighties, the concept of responsiveness 
first received attention in the medical literature on measurement issues 
(Deyo and Centor, 1986; Guyatt et al., 1987). There have been major dis-
cussions about whether responsiveness should be considered as a separate 
measurement property, or as an aspect of validity. In Chapter 6, validity was 
defined as ‘the degree to which an instrument truly measures the construct(s) 
it purports to measure’. This definition implies that if you want to measure 
change, a valid instrument should truly measure changes in the construct(s) 
it purports to measure. We therefore consider responsiveness as an aspect 
of validity. The only difference between validity and responsiveness is that 
validity refers to the validity of a single score (estimated on the basis of one 
measurement), and responsiveness refers to the validity of a change score 
(estimated on the basis of two measurements).

However, in analogy to the COSMIN panel, we treat responsiveness as a 
separate measurement property to emphasize this distinction between the 
validity of a single score and the validity of a change score. Both are import-
ant, and may lead to different results.

7.2.2â•‡ Definition of responsiveness
Many different definitions of responsiveness have been proposed in the lit-
erature over the past decades (Terwee et al., 2003). Some of the proposed 
definitions differ only slightly from the COSMIN definition, but other defi-
nitions are based on very different points of view. There are two other points 
of view that we want to discuss.
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First of all, some authors have defined responsiveness as ‘the ability to 
detect change in general’. This could be any kind of change, but it is most 
often defined as a statistically significant change after treatment. For example, 
if a group of patients have a change in scores on the instrument under study 
over time (e.g. assessed with a paired t-test), it is concluded that the instru-
ment is responsive. We consider the concept of detecting any change odd, 
because any change can refer to true change, but also to noise, or change in a 
different construct. Therefore, it is important to include in the definition the 
notion that the construct of interest has truly changed. To detect noise is not 
what we want, and the ability to detect change when there is no true change 
also makes no sense.

Secondly, some authors have defined responsiveness as ‘the ability to 
detect clinically important change’. This definition requires a definition of 
what constitutes an important change. The importance of a change is not a 
responsiveness issue, because it concerns the interpretation of the change 
score, not the validity of the change score. Therefore, the term ‘important’ 
was not included in the COSMIN definition of responsiveness.

7.2.3â•‡ Implications for measuring responsiveness
Assuming that responsiveness is an aspect of validity, it is logical that the 
methodological principles for assessing responsiveness are similar to those 
used to assess validity. We follow the same strategies as presented in Chapter 
6 on validity. The only difference is that in the present chapter we focus on 
the validity of change scores, while in Chapter 6 we focused on the validity 
of single scores. This has some important consequences for design and ana-
lyses, which will be discussed below.

Because we focus on change scores, a longitudinal study is required in 
which changes on the construct are expected to occur. In a responsive-
ness study, at least two measurements should be taken in order to calculate 
change scores. To determine whether the instrument under study can detect 
changes, the design should be chosen in such a way that it could be expected 
that at least some proportion of the patients would improve or deteriorate 
on the construct to be measured. Otherwise, if no change on the instrument 
is observed, it is difficult to decide afterwards whether the patients really did 
not change, or whether the measurement instrument was not responsive. For 
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example, responsiveness can be assessed in patients with a chronic progres-
sive disease, who are known to deteriorate over time, or in a study in which 
patients are given a treatment or some other kind of intervention known to 
induce a change on the construct to be measured. The principle is that when 
a patient group is expected to change on the construct to be measured, you 
want to show that the instrument can measure this change. The time-period 
between the two measurements can be short (e.g. a few weeks) or long (e.g. 
a period of months). This is not relevant, as long as it can be expected that 
during this time-period at least a proportion of the patients will improve or 
deteriorate on the construct to be measured.

In analogy to validity, assessing responsiveness consists of testing hypoth-
eses. These hypotheses now concern the expected relationships between 
changes on the instrument under study and changes on other instruments 
that measure similar or different constructs, or expected differences between 
groups in changes on the instrument. For example, the responsiveness of a 
visual examination (the instrument under study) to measure shoulder range 
of motion in a group of patients with shoulder trauma could be assessed. 
To do this one could test the hypothesis that changes in shoulder range 
of motion over a period of 6 months, as estimated by the visual examin-
ation, will correlate highly (e.g. > 0.50 or perhaps even > 0.70) with changes 
in range of motion, as measured with an inclinometer. This is because an 
inclinometer is expected to measure the same construct as is measured with 
visual examination. If the hypothesis is not rejected, then visual examin-
ation is apparently a suitable method for the measurement of changes in 
shoulder range of motion in this population.

As indicated in Section 6.5.2, formulating hypotheses requires detailed 
knowledge of the construct (and its dimensions) that one intends to meas-
ure with the instrument under study and a conceptual model to hypothesize 
relationships with changes in other constructs. In addition, detailed know-
ledge is required about the other constructs being measured in the respon-
siveness study. As with validity, assessing responsiveness is a continuous 
process of accumulating evidence. It is not possible to formulate standards 
for the number of hypotheses that need to be tested. This depends on the 
construct to be measured, the study population and context, and the con-
tent and measurement properties of the instruments used for comparison. 
Sometimes negative results (e.g. a very low correlation between changes in 
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similar instruments) may provide more convincing evidence for assuming 
that an instrument is not responsive than positive results (e.g. a moderate 
correlation between changes in similar instruments) for assuming that an 
instrument is responsive. One can therefore never conclude that an instru-
ment is responsive.

Similar to validity, different approaches can be used, and the evidence 
from these approaches should be combined in order to draw conclusions 
about the degree of responsiveness of the instrument in a specific popula-
tion and context. The two main approaches for assessing responsiveness are 
the construct approach and the criterion approach. These will be discussed 
in the following sections.

7.3â•‡ Criterion approach

When a gold standard for change is available, a criterion approach can be 
used to assess the degree to which changes in the scores on a measurement 
instrument are an adequate reflection of changes in scores on a ‘gold stand-
ard’. When the occurrence of change is not assumed but measured, then 
the measurement instrument used as gold standard should be known to be 
responsive. This is comparable with assessing criterion validity, but the diffe-
rence is that we now look at the criterion validity of change scores instead 
of single scores.

The general design of the criterion approach is almost identical to the 
design of criterion-related validation, and consists of the following steps:

(1)	 identify a suitable criterion (a gold standard for the construct of inter-
est) and a method of measurement

(2)	 identify an appropriate sample of the target population in which the 
measurement instrument will ultimately be used

(3)	 define a priori the required level of agreement between changes on the 
measurement instrument and changes on the criterion

(4)	 obtain the changes in scores on the measurement instrument and the 
changes in scores on the gold standard, independently from each other, 
but over the same time period

(5)	 determine the strength of the relationship between changes in scores on 
the measurement instrument and changes in scores on the criterion
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For more details of these requirements, see Section 6.4. Two additional 
remarks can be made here that are specific for assessing responsiveness:

With regard to step 1, we indicated in Chapter 6 that gold standards 
for patient-reported outcomes are very rare. There is only an acceptable 
gold standard for a shortened version of a patient-reported outcome. In 
that case, the original long version might be considered a gold standard. 
However, in many studies on the responsiveness of patient-reported out-
comes a global rating scale (GRS) is used as a gold standard for measuring 
change. Patients are asked at follow-up, in a single question, to indicate 
how much they have changed (since baseline) on the construct of interest 
(e.g. on a five-point rating scale ranging from much worse, to much bet-
ter). Such a GRS has high face validity, and may therefore be considered a 
reasonable gold standard for patient-reported outcomes, provided that the 
GRS assesses the same construct as the instrument under study. However, 
doubt has been expressed about the reliability and validity of such retro-
spective measures of change (Norman et al., 1997). Therefore, some authors 
consider assessing responsiveness using a GRS to be a construct approach, 
rather than a criterion approach. This discussion illustrates that there is 
no clear cut-off point between a gold standard and silver, bronze or other 
standard. We consider a GRS to be a suitable criterion if the GRS measures 
the same construct as the instrument under study. If the GRS measures 
another construct (e.g. the GRS measures a general change in a patient’s 
‘condition’, while the instrument under study measures a narrower con-
struct such as physical functioning), it is sensible to consider this as a con-
struct approach, and relevant hypotheses should be formulated and tested 
(see Section 7.4).

Step 3 concerns criteria for the level of agreement between the scores of 
the measurement instrument and the gold standard that is considered to 
be acceptable. In Section 6.4 we stated that it is difficult to provide these 
criteria, and that correlations higher than 0.7 are sometimes reported to be 
acceptable. In responsiveness studies, which focus on agreement between 
change scores on the measurement instrument and change scores on the 
gold standard, lower correlations are often found. This can be explained by 
the fact that in order to obtain a change score two measurements of both the 
instrument under study and the gold standard are used. Each measurement 
is accompanied by a certain degree of measurement error. Therefore, lower 
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correlations should be expected for the strength of the relationship between 
changes in the instrument scores and changes in the criterion scores.

Several statistical methods can be used for the criterion approach, depend-
ing on the level of measurement. Change scores on the instrument under 
study, as well as on the gold standard, can be dichotomous (change versus 
no change), ordinal (e.g. very much worse, a little worse, unchanged, a little 
better, very much better) or continuous (e.g. a change in score on a question-
naire). An overview of the statistical parameters used at various measurement 
levels of the gold standard and the measurement instruments was presented 
in Table 6.2. Correlations are often used when the gold standard is a continu-
ous variable, or receiver operating characteristic curves (ROCs) when the gold 
standard is a dichotomous variable. The area under the ROC curve (AUC) is 
considered to measure the ability of an instrument to discriminate between 
patients who are considered to be improved (or deteriorated) and patients 
who are not considered to be improved (or deteriorated) according to the gold 
standard. An AUC of at least 0.70 is usually considered to be appropriate.

For the ROC method, there is an extra requirement with regard to the 
population. The sample should not only contain at least a proportion of 
patients who show change (see Section 7.2.3), but also a proportion who do 
not change.

7.3.1â•‡ Example of a continuous variable as gold standard
Leung et al. (2006) examined the responsiveness of the 2-min walk test 
(2MWT) as a measure of walking ability, in 45 patients with moderate to 
severe chronic obstructive pulmonary disease. Patients were asked to walk 
as far as they could at their own pace in 2 min, back and forth along a 30-m 
indoor corridor. The distance walked was recorded in metres. Each patient 
was asked to perform three 2MWTs with a rest-interval of about 20 min 
between tests. The longest distance walked was included in the analysis. As 
a criterion, they used the 6-min walk test (6MWT). Patients were asked to 
walk back and forth at their preferred pace along a corridor, attempting to 
cover as much ground as possible in 6 min. The distance walked was recorded 
in metres. Two 6-min walk tests were performed with an adequate recovery 
time between each test, and the longest distance walked was included in 
the analysis. The rationale for this study was that the 2MWT might be a 
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useful alternative for the 6MWT, because the 6MWT is more exhausting for 
patients with severe chronic obstructive pulmonary disease (some patients 
with severe symptoms may not even be able to complete a 6MWT), and 
more time-consuming in a busy healthcare setting.

The 2MWT and the 6MWT took place at the start and at the end of a 
5-week intensive pulmonary rehabilitation program. Responsiveness was 
assessed by calculating the correlation between the change in the distance 
walked in the 2MWT and the change in distance walked in the 6MWT. This 
correlation was 0.70, and the authors concluded that the responsiveness of 
the 2MWT was good.

A minor comment on this study is the moderate sample size (n = 45).

7.3.2â•‡ Example of dichotomous variable as gold standard
Spies-Dorgelo et al. (2006) examined the responsiveness of the ‘hand and 
finger function’ subscale of the Arthritis Impact Measurement Scales (AIMS-
HFF) in patients with hand and wrist problems. This subscale contains five 
questions about limitations in hand and finger function while performing 
the following specific tasks:Â€ writing with a pen or pencil, buttoning up a 
shirt, turning a key, tying knots or shoelaces, and opening a jar. The items 
were summarized, and a total score was calculated, ranging from 0 (good 
functioning) to 10 (poor functioning). The study population consisted of 
84 participants recruited in primary care for a longitudinal study on the 
diagnosis and prognosis of hand and wrist problems. At the 3-month fol-
low-up, patients were asked to score the change in their ability to perform 
daily activities on a GRS. The seven response options were:Â€(1) ‘very much 
improved’; (2) ‘much improved’; (3) ‘a little improved’; (4) ‘no change’; (5) 
‘a little deterioration’; (6) ‘much deterioration’; (7) ‘very much deterioration’ 
(the latter three categories were combined in the analyses). This measure-
ment of change was used as the criterion (gold standard) for the evaluation 
of responsiveness. A total of 76 patients completed the follow-up question-
naire. The authors first calculated the correlation between changes on the 
AIMS-HFF and the GRS. The observed Spearman’s rho correlation was 0.52, 
which the authors considered to be moderate. Then they looked at mean 
changes in the AIMS-HFF scores for categories of improvement, as indi-
cated on the GRS (Table 7.1).
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The authors stated that although self-reported improvement was associ-
ated with an improvement in scores on the AIMS-HFF, there was no gradual 
increase in scores over the categories of improvement.

Subsequently, they performed a ROC analysis. They considered patients 
who showed any improvement at all on the GRS as ‘improved’ (n = 33), 
and those reporting no change as ‘stable’ (n = 34). Those who reported 
any deterioration (n = 9) were excluded from this analysis. The AUC was 
then calculated as a measure of the ability of the AIMS-HFF to discrim-
inate between those who had improved and those who remained stable 
according to the GRS. The AUC was 0.79, which the authors considered 
to beÂ€good.

A few remarks can be made about this study. First of all, although the total 
sample size of this study can be considered good (n = 84) and the amount 
of drop out was acceptable (eight patients, so there were 76 included in the 
responsiveness analysis), we observe that the sample sizes of the subgroups 
for the analyses are moderate (n = 33 versus n = 34 in the ROC analysis). 
Most of the subgroups, presented in Table 7.1, are very small. If these small 
subgroups were expected, the authors should have included more patients. 
The sample size of the various subgroups should therefore be taken into 
account when designing a responsiveness study.

Secondly, no explicit criteria were defined beforehand with regard to 
how high the AUC should be, or how much difference in change score on 
the AIMS-HFF was expected between the subgroups in Table 7.1. In the 

Table 7.1â•‡ Changes in AIMS-HFF scores between baseline and  
3-month follow-up for categories of improvement on the GRS

n Mean ± SD

Very much improved 16 1.47 ± 1.44
Much improved 11 2.18 ± 2.80
A little improved 6 1.10 ± 1.41
No change 34 –0.18 ± 1.36
Deterioration 9 –0.89 ± 2.33

Adapted from Spies-Dorgelo et al. (2006), with permission.
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following section, we will demonstrate that defining explicit hypotheses 
makes the interpretation of the data more transparent.

7.4â•‡ Construct approach

If there is no gold standard available, the assessment of responsiveness relies 
on testing hypotheses, just like the assessment of construct validity described 
in Section 6.5.2. In the case of responsiveness, the hypotheses concern 
expected mean differences between changes in scores on the instrument in 
groups, or expected correlations between changes in scores on the instru-
ment and changes in scores on other instruments known to have adequate 
responsiveness. One could also consider relative correlations, for example 
one may hypothesize that the change on instrument A is expected to correl-
ate more with the change on instrument B than with the change on instru-
ment C because the constructs being measured by instruments A and B are 
more similar than the construct being measured with instrument C.

Testing hypotheses is much less common in responsiveness studies than 
in validity studies. This may be due to the confusion in the literature with 
regard to how responsiveness should be assessed. Only after the achieve-
ment of consensus that responsiveness should be treated as an aspect 
of validity, did researchers start to apply the same strategies for assessing 
responsiveness.

As we stated in Section 6.5.2, specific hypotheses to be tested should be 
formulated a priori, preferably before the data collection and certainly before 
the data analysis. Without specific hypotheses, the risk of bias is high, because 
retrospectively it is tempting to think up alternative explanations for low cor-
relations instead of concluding that an instrument may not be responsive. 
This is especially problematic when the researchers also are the developers 
of the instrument, or when they use the instrument as an outcome measure 
in their (clinical) studies. Another advantage of defining explicit hypotheses 
is that it makes interpretation of the data more transparent, because it ena-
bles quantification of the number of correlations of differences in accordance 
with the hypotheses. This will be shown in an example below.

Just like the hypotheses for testing validity, the hypotheses for testing 
responsiveness should include the expected direction (positive or negative) 
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and the (absolute or relative) magnitude of the correlations or differences 
between the change scores. For example, one may expect a positive correl-
ation of at least 0.50 between changes on two instruments that intend to 
measure the same construct. Or, one may expect that the change in score on 
instrument A correlates at least 0.10 points higher with the change in score 
on instrument B than with the change in score on instrument C (see example 
below). Or, one may expect a mean difference of 10 points on a scale from 0 
to 100 in change scores on the instrument between two patient groups who 
are expected to differ in change on the construct to be measured. Without 
this specification of the expected differences or correlations, it is difficult to 
decide afterwards whether the hypothesis is confirmed or not.

One should not rely on P values of the correlations, because it is not 
relevant to determine whether correlations differ statistically significantly 
from zero. Instead, the responsiveness issue concerns whether the direction 
and magnitude of the observed correlation is similar to what was expected 
based on the construct being measured. One should therefore compare 
the observed magnitude of the correlation with the expected correlation. 
When assessing differences between changes in groups, it is also less rele-
vant whether these differences are statistically significant (which partly 
depends on the sample size) than whether these differences are as large as 
was hypothesized.

Finally, it is important to note that to facilitate interpretation of the results, 
authors should provide arguments or evidence for their hypotheses (e.g. 
based on previous research findings).

Example of hypotheses testing
De Boer et al. (2006) assessed the responsiveness of the Vision-Related 
Quality of Life Core Measure (VCM1). The VCM1 measures vision-related 
quality of life, operationalized as feelings and perceptions associated with 
visual impairment. It consists of one unidimensional scale with nine items. 
A total score was calculated from 0 (lowest quality of life) to 100 (highest 
quality of life). The study population consisted of 329 visually impaired older 
men and women who participated in a 1-year follow-up study on the effect 
of low vision services on quality of life. The instruments used for compari-
son were:Â€(1) the VF-14, which is a visual functioning questionnaire devel-
oped specifically for patients with cataracts (earlier studies have reported on 
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the reliability, validity and responsiveness of the VF-14 in patients with cata-
ract); (2) the EuroQol, which is a generic health-related quality of life ques-
tionnaire (De Boer et al. found adequate reliability in their study population, 
but other measurement properties (validity, responsiveness) have not been 
assessed in visually impaired patients); (3) a single global question (GRS) 
about perceived changes in eye condition; and (4) distance visual acuity. All 
measurements took place at baseline and after 5 months of follow-up, except 
for the GRS, which was only completed at follow-up. As a method for assess-
ing responsiveness, the authors postulated specific hypotheses about the 
expected relationships between changes on the VCM1 and changes on the 
other instruments (see Table 7.2). For example, they expected that change 

Table 7.2â•‡ Hypotheses for the responsiveness of the VCM1

Hypotheses Correlations Confirmed

1 The correlation of change on the VCM1 with 
change on the VF-14 is 0.1 higher than the 
correlation of change on the VCM1 with the GRS

0.39 vs 0.19 Yes

2 The correlation of change on the VCM1 with 
change on the VF-14 is 0.2 higher than the 
correlation of change on the VCM1 with change 
in visual acuity

0.39 vsÂ€–0.02 Yes

3 The correlation of change on the VCM1 with 
change on the VF-14 is 0.3 higher than the 
correlation of change on the VCM1 with change 
on the EuroQol

0.39 vs 0.26 No

4 The correlation of change on VCM1 with the 
GRS is 0.1 higher than the correlation of change 
on VCM1 with change in visual acuity

0.19 vsÂ€–0.02 Yes

5 The correlation of change on the VCM1 with the 
GRS is 0.2 higher than the correlation of change 
on the VCM1 with the change on the EuroQol

0.19 vs 0.26 No

6 The correlation of change on the VCM1 with 
change in visual acuity is 0.1 higher than the 
correlation of change on the VCM1 with change 
on the EuroQol

–0.02 vs 0.26 No

Total amount of hypotheses that were rejected 3/6

Adapted from De Boer et al. (2006), with permission.
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scores of the VCM1 would correlate more with the GRS than with changes 
in visual acuity, because the GRS is an assessment of changes in the eye con-
dition from the patient’s perspective, as is the VCM1. They also expected the 
correlation of change on the VCM1 with change on the VF-14 to be higher 
than the correlation of change on the VCM1 with change on the EuroQol, 
because there is quite some overlap in the content of the questions in the 
VCM1 and VF-14. Responsiveness was considered to be high if less than 
25% of the hypotheses were rejected, moderate if 25–50% were rejected and 
poor if more than 50% were rejected.

The percentage of hypotheses that were rejected for the VCM1 was 50%, 
which the authors considered to be moderate responsiveness. According to 
the authors, the moderate results were mainly due to the fact that correla-
tions between changes on the VCM1 and changes in visual acuity (–0.02) 
were lower than expected. However, if the correlation with visual acuity 
would have been higher, the responsiveness might have been worse instead 
of better. Another explanation could be that the correlation between the 
changes on the VCM1 and changes in the EuroQol were greater than 
expected. The EuroQol was included in the three hypotheses that could not 
be confirmed.

However, when considering the correlations presented in Table 7.2, it can 
be concluded that the rather low correlation between changes in the VCM1 
and changes on the VF-14 (which measures a similar construct) (0.39) and 
the low correlation between changes on the VCM1 and the GRS (0.19) indi-
cate that the VCM1 might, indeed, not be very responsive.

A strong point of this study was that specific hypotheses were defined 
before the data collection, including the magnitude of the expected differ-
ences between the correlations. A limitation of this study is that the GRS 
focused on perceived changes in ‘eye condition’, which may not be the same 
as perceived changes in feelings and perceptions associated with visual 
impairment, as measured by the VCM1. This could be an alternative explan-
ation for the low correlation between changes on the VCM1 and the GRS 
(0.19). If a global rating of change is used, we recommend that this question 
should be formulated in such a way that it measures the same construct as 
the instrument under study. If the instrument has subscales that measure 
different constructs, we recommend that multiple global ratings of change 
should be used, and that a specific question should be formulated for each 
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construct measured. Another limitation of this study is that it provided little 
information about the measurement properties of the EuroQol in this popu-
lation. A final limitation is that some hypotheses were dependent upon each 
other. Because the correlation between the VCM1 and EuroQol was higher 
than expected, hypotheses 3, 5 and 6 could not be confirmed.

7.5â•‡ Inappropriate measures of responsiveness

A number of other methods to assess responsiveness have been proposed in 
the literature, but we have not discussed these so far. However, some meth-
ods, such as effect sizes (ES), are widely used. In this section we will explain 
why these measures are not appropriate for the definition of responsiveness 
and therefore provide only limited evidence for responsiveness.

7.5.1â•‡ Effect sizes
Many studies assess responsiveness on the basis of ES. ES are usually cal-
culated either as the mean change score in a group of patients, divided by 
the standard deviation (SD) of the baseline scores of this group, or as the 
mean change score in a group of patients, divided by the SD of this change 
score (also referred to as the standardized response mean (SRM)). These 
measures were developed as standardized measures of the magnitude of the 
effect of an intervention or other events that happened over time, express-
ing the magnitude of change in the amount of SDs. As a rule of thumb, the 
criteria proposed by Cohen (1977) are often used:Â€ES of 0.20 are generally 
considered as small, ES of 0.50 are generally considered as moderate and 
ES of 0.80 are generally considered as large. Many authors interpret ES as 
measures of responsiveness, and conclude that their instrument is respon-
sive if the ES is large.

For example, Johansson et al. (2009) used the Spinal Cord Index of 
Function (SIF) to measure changes in ability to perform various transfers 
(e.g. moving from bed to wheelchair or from wheelchair to shower chair) in 
non-ambulant patients with a spinal cord lesion participating in a rehabili-
tation program. The SIF consists of nine parameters, which are summarized 
in a total score, ranging from 9 to 54 points, with higher scores indicat-
ing better functioning. The ES, calculated as described above, was 9.1. They 
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concluded:Â€‘The effect size calculating the magnitude of change in ability to 
transfer, from the time of admission to the study until discharge, proved to 
be 9.1 for the SIF, showing a high magnitude of change, proving the instru-
ment’s responsiveness to changes’.

We do not agree with this conclusion. A high magnitude of change gives 
little indication of the ability of the instrument to detect change over time on 
the construct to be measured, because the observed change might be smaller 
than the true change in ability to transfer. Reasons why the true change may 
have not been detected by an instrument could be the occurrence of a ceil-
ing effect or a lack of relevant items (lack of content validity). Furthermore, 
ES are highly dependent on the SD (of the baseline scores (ES) or the change 
scores (SRM)), and will therefore be higher in a relatively homogeneous 
population (ES) or if the variation in treatment effect is small (SRM). In this 
study, the SD of the baseline score was very small, which contributed to the 
large ES. Therefore, without a comparison instrument or strongly grounded 
hypotheses about the expected magnitude of the effects, the results provide 
very limited evidence of responsiveness.

ES are measures of the magnitude of the change scores, rather than the 
validity of the change scores. Therefore, ES should be considered inappro-
priate as parameters of responsiveness.

7.5.2â•‡ Paired tâ•›-test
Some authors use the P value obtained from a paired t-test as a measure 
of responsiveness. For example, Berry et al. (2004) investigated the respon-
siveness (which they called sensitivity to change) of the skin management 
needs assessment checklist (SMnac), to measure skin management ability 
in patients with spinal cord injury. They included 317 patients, who were 
measured twice, before and after a rehabilitation program. A paired-sample 
t-test was used to evaluate the responsiveness of the SMnac. There was a sig-
nificant difference between the first and second SMnac scores (Pâ•›<â•›0.001), so 
the authors concluded that the SMnac has high responsiveness.

We do not agree with this conclusion, because the P value from the paired 
t-test is a measure of the statistical significance of the change scores instead 
of the validity of the change scores. Statistical significance depends on the 
magnitude of change, the SD of the change scores, and the sample size. 
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Therefore, the paired t-test should not be considered as a good parameter 
of responsiveness.

7.5.3â•‡ Guyatt’s responsiveness ratio
Guyatt et al. (1987) introduced a responsiveness ratio, defined as the min-
imal important change (MIC; which is the smallest change in score that 
patients consider important) on an instrument, divided by the SD of change 
scores in stable patients, to assess the likelihood of an instrument to detect a 
clinically important treatment effect:

Guyatt’s responsiveness ratio MIC
SDchange

=
 

.

In Chapter 8, we will explain how this MIC value can be determined. We 
do not consider this ratio to be an appropriate parameter of responsiveness, 
because Guyatt’s responsiveness ratio gives no information about the valid-
ity of the change scores (remember our definition of responsiveness refer-
ring to the validity of change scores). The numerator (MIC) is a measure of 
the interpretability of the change scores, and not the validity of the change 
scores. The denominator (SD of the change scores in stable patients) is an 
assessment of measurement error (closely related to the limits of agreement 
and the smallest detectable change, see Sections 5.4.2.2 and 5.6.2.2). Thus, 
neither the numerator nor denominator of this ratio reflects the validity of 
the change scores, and therefore we do not consider this ratio as a measure 
of responsiveness.

In fact, Guyatt et al. also acknowledged this in their article. They stated 
that ‘demonstration of responsiveness is not sufficient to ensure the use-
fulness of an evaluative instrument. In addition, it must be shown to be 
valid.’ They argued that an instrument can be responsive but the apparent 
improvement may represent change in a different construct such as satis-
faction with Â�medical care. Similarly, if an intervention of unknown effect-
iveness is administered and no change on the instrument is observed, it will 
be impossible, without knowing if other related measures have changed, to 
determine if the instrument is unresponsive or the intervention ineffective.

From this statement it can be concluded that Guyatt et al. make a disÂ�
tinction between responsiveness (which they define as the responsiveness 
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ratio above) and validity, which they define as the validity of change scores. 
We, however, have incorporated validity within our definition of respon-
siveness, i.e. the validity of change scores. Therefore, we consider Guyatt’s 
responsiveness ratio not as a measure of responsiveness. In Chapter 8 we will 
explain why we consider the concept of relating MIC to measurement error 
as a useful approach for assessing the interpretability of change scores.

7.5.4â•‡ Exceptions
In Section 7.5.1 and 7.5.2 we explained why ES and P values are considered 
to be inappropriate measures of responsiveness. However, if these measures 
are used in a construct validity approach with a priori defined hypotheses 
about the expected magnitude of the ES or changes, then the use of ES or P 
values is acceptable. An example of such a study is presented below.

Morris et al. (2009) examined the responsiveness of the Oxford Ankle 
Foot Questionnaire (OAFQ). The OAFQ measures child- or parent (proxy)-
reported health status, and was developed for 5–16-year-old children with 
foot and ankle problems. The questionnaire includes 15 items; six items for 
the physical domain, four for the school and play domain, four for the emo-
tional domain and one for the foot wear domain. The domain scores were 
calculated as the total of the item scores, and transformed to a percentage 
scale (0–100), with a higher score indicating better functioning.

Eighty children, between 5 and 16 years of age, who were seeking ortho-
paedic management for a foot or ankle problem, either at an elective out-
patient clinic (n = 55) or a trauma unit outpatient clinic (n = 25), were 
included in the study. The children (n = 78 of 80) and one of their parents 
(n = 80) completed the OAFQ at baseline. At follow-up, 34 children and 37 
parents from the elective group and 16 children and 16 parents from the 
trauma group completed the 2-month follow-up measurements.

The responsiveness of the OAFQ was assessed by determining changes 
in scores between baseline and follow-up, using paired t-tests. ES were also 
calculated as mean change, divided by the baseline SD. These were classified 
as large (0.8), moderate (0.5) or small (0.2). In addition to calculating these 
parameters, the authors defined specific hypotheses about the expected 
results. Their main hypotheses for responsiveness were that (1) there would 
be greater improvements in the scores of trauma patients than in the scores 
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of elective patients at follow-up, and (2) the ES would be greater for the 
physical domain than for the other domains, because this is the focus of 
orthopaedic management. The results are presented in Table 7.3.

All OAFQ scores are transformed to a percentage scale (0–100), with 
higher scores indicating better functioning. Some samples are smaller than 
34 of 37 or 16 of 16 because of missing values. Table 7.3 was adapted with 
permission from Morris et al. (2009).

As expected, the ES in the domain scores were found to be substantially 
greater for trauma patients than for elective patients. All P values of changes 
in the trauma group were also much smaller than P values of changes in the 
elective group, even though the sample size of the trauma group was smaller. 
They did not test the difference between changes in the two groups for stat-
istical significance. As hypothesized, the ES were greater for the physical 
domain than for the other domains, although not in all cases.

This example demonstrates that ES can be used to assess responsive-
ness, but only when specific hypotheses are tested (in this case concerning 
expected differences in changes between groups).

Table 7.3â•‡ Mean (SD) change in the domain scores of the Oxford Ankle Foot Questionnaire

Elective Trauma

n    Change P value
Effect 
size n Change P value

Effect 
size

Physical
Child 34 9.8 (23.7) 0.022 0.4 16 43.2 (21.8) <0.001 2.0
Parent 37 10.7 (27.1) 0.006 0.5 16 39.8 (28.8) <0.001 1.7

School & Play
Child 32 –0.3 (17.8) 0.924 0.0 16 45.2 (32.1) <0.001 1.3
Parent 35 8.9 (23.0) 0.029 0.4 14 56.4 (29.1) <0.001 1.6

Emotional
Child 34 5.5 (17.0) 0.067 0.2 16 17.4 (23.0) 0.008 0.8
Parent 37 8.4 (19.6) 0.013 0.3 16 20.8 (21.4) 0.001 1.0

Footwear (single item)
Child 34 2.2 (35.0) 0.716 0.1 16 56.3 (36.0) <0.001 1.6
Parent 37 3.4 (34.4) 0.554 0.1 16 60.9 (54.0) <0.001 2.2
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The approach would have been even better if the authors had defined 
in their hypotheses the magnitude of the expected differences in changes 
between the two groups and between the change scores of the different 
domains. Another limitation of this study is that the sample sizes of the two 
groups were rather small.

7.6â•‡ Other design issues

In Chapter 6 (Section 6.6) we provided some guidelines for sample sizes 
in validity studies and handling missing values. These guidelines also apply 
to studies on responsiveness. We also explained that when validation takes 
place during a clinical study, this could cause problems in the interpretation 
of results. For the same reason, one should be cautious when evaluating the 
responsiveness of a measurement instrument in the same study in which 
theÂ€instrument is used as an outcome measure. This will be demonstrated in 
the following example.

Turcot et al. (2009) measured tibial and femoral accelerations as a param-
eter of knee instability in 24 patients with knee osteoarthritis (OA) before 
and 2 weeks after a 12-week rehabilitation program (RP). Accelerations were 
measured in three directions:Â€medial–lateral (ML), anterior–posterior (AP) 
and proximal–distal (PD), and expressed as the standard value of gravita-
tional acceleration (g). ES were calculated as observed change/SDbefore RP. The 
results are presented in Table 7.4.

The data show that the changes in AP acceleration were greater than the 
changes in ML and PD accelerations. The authors concluded that ‘the results 
show that the estimation of knee acceleration parameters is responsive to 
gait changes in knee OA subjects by the reduction of accelerations, espe-
cially in AP direction’. However, at the same time they concluded that ‘the 
significant AP acceleration reduction of 19% during the loading phase of 
gait suggests that the rehabilitation treatment proposed in this study could 
have benefits on knee OA gait by decreasing AP instability.’ Now, what con-
clusion can be drawn from this finding? Does it tell us something about 
the quality of the instrument, or about the effect of the intervention? These 
two issues cannot be disentangled. The problem becomes even clearer in 
the interpretation of acceleration in the ML direction. Almost no change 
is observed. Does this mean that there is no effect in the ML direction, or 
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that the instrument is not responsive. It is impossible to answer this ques-
tion. Therefore, responsiveness should be assessed in a study population in 
which it is known that at least some of the patients change on the construct 
to be measured.

Finally, it is worth noticing that the term responsiveness is also used in 
the medical literature, with a different meaning. Responsiveness also indi-
cates the physiological response of body systems to stimuli such as drugs 
or hormones. For example, Olson et al. (2010) studied the effect of a high 
fat diet on mammary gland response to oestrogen. They investigated how 
obesity and increased adiposity, as a result of a fat diet, were associated with 
reduced mammary gland responsiveness to oestrogen in mice. Although 
this is related to measuring change (in this case, change in mammary gland 
response to oestrogen), the aim of such studies is not to assess the quality of 
a measurement instrument. When searching for responsiveness studies, for 
example in PubMed, it is inevitable that many such studies will be among 
those retrieved.

7.7â•‡ Summary

The ultimate goal of medicine is to cure patients. Therefore, the ability of 
measurement instruments to detect changes over time is a very import-
ant measurement property. The COSMIN panel defined responsiveness as 
‘the ability of an instrument to detect change over time in the construct to 
be measured’. Responsiveness is an aspect of validity. The only difference 
between validity and responsiveness is that validity refers to the validity of 
a single score, and responsiveness refers to the validity of a change score. 

Table 7.4â•‡ Accelerations before and after rehabilitation in patients with knee OA

Before RP After RP

Acceleration Mean SD Mean SD ES SRM

ML (g) 0.56 0.33 0.57 0.30 0.03 0.05
AP (g) –0.88 0.42 –0.74 0.38 0.33 0.52
PD (g) 0.25 0.13 0.27 0.15 0.15 0.22

Adapted from Turcot et al. (2009), with permission.
g, the standard value of gravitational acceleration at sea level.
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Although the results of assessing validity and responsiveness can differ, the 
basic methodological principles are the same. Responsiveness is, however, 
treated as a separate measurement property to emphasize that validity of 
both single scores and change scores is important, and may lead to differ-
ent results. There is a lot of confusion in the literature about the concept of 
responsiveness, and over the past decades many different definitions and 
measures have been proposed.

Responsiveness should be evaluated in a longitudinal study in which at 
least some of the patients are known to change on the construct to be meas-
ured. Based on the analogy between validity and responsiveness, a construct 
approach and a criterion approach are distinguished. When a gold stand-
ard is available, changes on the instrument can be compared with changes 
on the gold standard. Several statistical methods can be used for this com-
parison, depending on the level of measurement. If there is no gold stand-
ard available, the assessment of responsiveness relies on testing hypotheses 
about expected mean differences between changes in groups of patients or 
expected correlations between changes in the scores on the instrument and 
changes in other variables. Hypotheses may also concern the relative mag-
nitude of correlations. Specific hypotheses to be tested should be formulated 
a priori, preferably before the data collection. The statistical methods should 
be suitable for the specific hypotheses. Hypotheses testing is an ongoing pro-
cess; the more specific the hypotheses are, and the more hypotheses tested, 
the more evidence can be gathered for responsiveness.

There are a number of parameters proposed in the literature to assess 
responsiveness that we consider inappropriate. ES and SRM are consid-
ered to be inappropriate because they are measures of the magnitude of the 
change scores, rather than of the validity of the change scores. The P value 
from the paired t-test is considered to be inappropriate because it is a meas-
ure of the statistical significance of the change scores, instead of the validity 
of the change scores. Finally, Guyatt’s responsiveness ratio is considered to 
be inappropriate because the MIC refers to the interpretability of the change 
scores, and not to the validity of the change scores.

Evaluating the responsiveness of a measurement instrument in the same 
study in which the instrument is used as an outcome measure makes it 
impossible to draw any firm conclusions about responsiveness.
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Assignment

Methods to assess responsiveness
In a study of 120 patients with low back pain, Deyo and Centor (1986) stud-
ied the responsiveness of two instruments to measure functional status:Â€the 
45-item Sickness Impact Profile Physical Dimension (SIP-PD) and a brief 
condition-specific 24-item scale derived from the SIP, now known as the 
Roland–Morris Disability Questionnaire (RDQ). (Only part of the data 
from this article are used in the assignment.) The RDQ was develÂ�oped by 
selecting 24 items from the SIP, which were considered to be most relevant 
for patients with back pain. In addition, the phrase ‘because of my back’ was 
added to each statement to distinguish disability due to back pain from dis-
ability due to other causes. In this study the complete SIP (136 items) was 
administered. The SIP-PD score was calculated from 45 of the SIP items, and 
the RDQ score was calculated from 24 of the SIP items (21 items overlap). 
The patients completed the questionnaire at baseline and after 3 weeks of 
follow-up. At the same time-points spine flexion and degrees of straight leg 
raising were measured. At the 3-week follow-up, the patients rated their pain 
improvement on a 6-point ordinal scale, (1 = much worse, 2 = slightly worse, 
3 = the same, 4 = slightly better, 5 = much better, 6 = pain entirely gone). The 
examining clinician made a rating of overall improvement on a similar scale, 
based on the patient’s appearance, self-rating, and physical examination. The 
patients were also asked to indicate whether or not they had fully resumed 
all activities (yes or no). The SIP-PD scores range from 0 to 100, with higher 
scores indicating more dysfunction, and the RDQ scores range from 0 to 24, 
with higher scores indicating more dysfunction. Change scores were calcu-
lated for the SIP-PD and the RDQ by subtracting the follow-up score from 
the baseline score. A positive change score indicated improvement.

As a first method for assessing responsiveness, they correlated change 
scores on the SIP-PD and on the RDQ with change scores in spine flexion, 
degrees of straight-leg raising, with the six-point patient and clinician ratings 
of change, and with the answers to the question concerning full resumption 
of all activities. These correlations are presented in Table 7.5.

The results suggest that the RDQ is more responsive than the SIP-PD, 
because most correlations with the other instruments are higher, although 
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the correlations were moderate. Based on these moderate correlations, the 
authors concluded that ‘the functional scales may be relatively insensitive in 
detecting clinical changes’.

(a)	 What do you think about the authors’ conclusion?

As a second method for assessing responsiveness, Deyo and Centor exam-
ined change scores after treatment by calculating change (in %) from base-
line (defined as mean change divided by mean baseline score) and paired 
t-statistics. They first investigated changes for the entire patient sample, and 
subsequently for two subgroups:Â€ those who indicated that they had fully 
resumed all their activities and those for whom both patient and clinician 
indicated pain improvement on the six-point rating scale. For the latter ana-
lysis, the six-point scale was reduced to a dichotomous variable (improved/
not improved). The results are presented in Table 7.6.

Based on the differences in the paired t-statistic between the SIP-PD 
and the RDQ, the authors concluded that in each patient group the RDQ 
appeared to be less responsive than the SIP-PD (although the differences 
were small). They argued that these results were somewhat contradictory to 
the results of the first method, which suggested that RDQ was more respon-
sive than SIP-PD.

(b)	 How do you explain the contradiction in results between Tables 7.5 
and 7.6?

As a third method for assessing responsiveness, Deyo and Centor cal-
culated ROC curves for each instrument, against two ‘external criteria’ 

Table 7.5â•‡ Spearman’s correlations between change scores

Self-rated pain 
improvement

Clinician’s 
rating of 
improvement

Change in 
spine flexion

Change in 
straight leg 
raising

Full 
resumption of 
all activities

SIP-PD 0.32 0.26 0.27 0.06 0.33
RDQ 0.41 0.30 0.29 0.003 0.38

Adapted from Deyo and Centor (1986), with permission.
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for improvement. As a first criterion, they selected those patients who 
had fully resumed all activities. As a second criterion, they selected 
those patients for whom both the patient and clinician indicated pain 
improvement.

They used two different external criteria because, in their opinion, there 
is no gold standard for functional status. Therefore, they chose to use an 
approach ‘like establishing construct validity’ to compare the instruments 
against several criteria. They argued that results consistent with several cri-
teria increase the odds that the relative performance of several scales is cor-
rectly ranked.

The areas under the ROC curves are presented in Table 7.7.

Table 7.6â•‡ Score changes among patients who improved, according to different criteria

Entire patient sample
(n = 120)

Patients who have fully 
resumed all activities
(n = 72)

Patients who have 
improved
(n = 87)

Mean 
change 
(SD)

Change
%

Paired 
t-statistic

Mean 
change 
(SD)

Change
%

Paired 
t-statistic

Mean 
change 
(SD)

Change
%

Paired 
t-statistic

SIP-PD 7.9 
(12.9)

27 6.73 11.4 
(12.9)

60 7.47 10.2 
(13.1)

55 7.26

RDQ 3.0 (5.2) 30 6.35 4.4 (5.4) 46 6.96 3.8 (5.3) 40 6.70

SIP scores range from 0 to 100, RDQ scores range from 0 to 24.
Adapted from Deyo and Centor (1986), with permission.

Table 7.7â•‡ Areas under the ROC curves (with standard errors)

Using ‘fully resumed all activities’ 
as criterion

Using ‘patients who improved’ 
as criterion

SIP-PD 0.68 (0.049) 0.59 (0.068)
RDQ 0.72 (0.047) 0.67 (0.068)

Adapted from Deyo and Centro (1986), with permission.
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The authors concluded that the RDQ showed slightly better discrimina-
tive ability than the SIP-PD, although the difference between the scales was 
not statistically significant.

(c)	 How do you explain the contradiction in results between Tables 7.6 
and 7.7?

(d)	 Do you consider the ‘external criteria’ for improvement adequate?
(e)	 If you had to repeat this study, how would you improve its design?
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8

Interpretability

8.1â•‡ Introduction

After addressing the development of measurement instruments in Chapters 
3 and 4 and evaluating measurement properties (i.e. reliability, validity and 
responsiveness) in Chapters 5–7, it is time to pay attention to the interpret-
ability of the scores when applying the measurement instruments. For well-
known instruments, such as blood pressure measurements and the Apgar 
score, the interpretability will cause no problems, but for new or lesser known 
instruments this may be challenging. This particularly applies to the scores for 
multi-item measurement instruments, the meaning of which is not immedi-
ately clear. For example, in a randomized trial on back pain carried out in the 
United Kingdom, the effectiveness of exercise therapy and manipulation was 
compared with usual care in 1334 patients with low back pain. The research-
ers used the Roland–Morris Disability Questionnaire (RDQ) to assess func-
tional disability (UK BEAM trial team, 2004). The RDQ has a 0–24-point 
scale, with a score of 0 indicating no disability, and 24 indicating very severe 
disability. The mean baseline score for the patients with low back pain was 9.0. 
In the group who received usual care, the mean RDQ value decreased to 6.8 
after 3 months, resulting in an average improvement of 2.2 points. This gives 
rise to the following questions:Â€What does a mean value of 9.0 points on the 
0–24 RDQ scale mean? In addition, is an improvement of 2.2 points mean-
ingful for the patients? The primary focus of this Â�chapter is on the interpret-
ability of scores and change scores on a measurement instrument. In other 
words, the aim is to learn more about the measurement instrument, and not 
about the disease under study.

We start with an explanation of the concept of interpretability, and which 
issues should be addressed in relation to interpretability. We will discuss 
methods to assess and enhance the interpretability of single scores, and then 
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discuss the interpretation of change scores. Two topics receive special atten-
tion in this respect:Â€the concepts of minimal important change (MIC) and 
response shift.

8.2â•‡ The concept of interpretability

The COSMIN panel defined interpretability as ‘the degree to which one can 
assign qualitative meaningÂ€– that is, clinical or commonly understood con-
notationsÂ€ – to an instrument’s quantitative scores or change in scores’. In 
everyday words, it is the degree to which it is clear what the scores or change 
scores mean. Interpretability is not a measurement property, like validity 
and reliability, because it does not refer to the quality of an instrument. It 
refers to what the scores on an instrument mean. However, interpretabil-
ity was considered to be sufficiently important by the COSMIN panel to be 
included in the COSMIN taxonomy (see Figure 1.1) (Mokkink et al., 2010a). 
They remarked that interpretability often receives insufficient attention. A 
proper interpretability of a score is a prerequisite for the well-considered use 
of an instrument in clinical practice and research.

In the concept of interpretability, there are a number of different issues to 
consider:

What is the distribution of the scores of a study sample on the instrument?•	
Are there floor and ceiling effects?•	
Are scores and change scores available for relevant (sub)groups (e.g. for •	
normative groups, subgroups of patients or the general population)?
Is the MIC or the minimal important difference known?•	

These issues will all be discussed, starting with an explanation of why the 
distribution of scores is important, how this is examined using classical test 
theory (CTT) and item response theory (IRT), and when floor and ceiling 
effects occur.

8.3â•‡ Distribution of scores of the instrument

8.3.1â•‡ Importance of examining the distribution of scores
A study of interpretability starts with an examination of the distri-
bution of scores in the study sample. This, of course, also includes an 
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extensive description of the study sample, in order to know for what kind 
of Â�population the scores are interpreted. In Chapter 4, we discussed the 
importance of the distribution of the item and scale scores of a study sam-
ple. In the development phase of an instrument, the question is:Â€ does a 
measurement instrument fit the population? At this time, we are inter-
ested in the distribution of scores to learn more about the characteris-
tics of the measurement instrument. This distribution is important for 
two reasons:Â€ for a proper interpretation of the scores of a measurement  
instrument, and also for a proper interpretation of the measurement 
properties.

First of all, the distribution of the scores of a study sample is import-
ant for a proper interpretation of the scores on a measurement instru-
ment. The distribution of the scores over the scale, in terms of mean and 
standard deviations (SDs), or in proportional distribution over classes, 
provides information about the location of the study sample on the meas-
urement instrument. The distribution shows whether the study sample 
has high or low scores, whether the sample is distributed over the whole 
range of the scale, or whether patients are clustered at some locations on 
the scale (i.e. homogeneous population). In the following section, we will 
give examples, using CTT and IRT. Using CTT, we can only learn about 
the interpretation of the measurement instrument if we have additional 
information about the study population. Sections 8.4 and 8.5 will show 
how this works for the interpretation of single scores and change scores, 
respectively.

Secondly, the distribution of scores of the study sample is important for 
a proper interpretation of the measurement properties. We have seen in 
Chapter 5 that reliability parameters are highly dependent on variation in 
the sample. A poor result in a reliability analysis may be due to a lack of 
variation of scores on the measurement instrument. This also applies to 
the interpretation of Cronbach’s alpha. Note that also for the assessment 
of construct validity and responsiveness, hypotheses are often formulated 
in terms of expected correlations between scores on measurement instru-
ments. These correlations also tend to be higher in more heterogeneous 
samples. Thus, knowledge about the distribution of the population scores 
over the measurement instrument affects the values of several measure-
ment properties.
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8.3.2â•‡ Examining the distribution of scores using classical test theory methods
Using CTT methods to examine the distribution of the scores over the 
scale may start with a simple presentation of mean and SDs of the scores, or 
median values and interquartile ranges (IQR) for continuous variables, and 
the numbers (%) in the various classes for ordinal or nominal variables. In 
addition, a histogram or some type of other visual presentation provides a 
clear insight into the distribution. It is important to know how the scores of 
the study sample are distributed over the scale, or whether there is a cluster-
ing of patients. This clustering is often found at the higher or lower end of 
the scale.

As an example, we use data from a RCT, carried out by Hoving et al. 
(2002) in which three types of conservative treatment for neck pain were 
compared. We present a histogram (in Figure 8.1) of the baseline scores on 
the Neck Disability Index (NDI) of 60 patients who were randomly allo-
cated to receive manual therapy. The NDI consists of 10 items with response 
options 0–5, resulting in a scale with a theoretical range of 0–50, with higher 
scores indicating more severe disability. The mean baseline value for NDI in 
these 60 patients was 13.55, with SD of 6.96.

NDI score before treatment
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Figure 8.1	 Histogram of the baseline scores on the NDI of 60 patients with non-specific neck 
pain that were allocated to manual therapy. Based on Hoving et al. (2002).
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Most of the scores are at the lower end of the scale, indicating that most of 
the patients were only slightly disabled due to their neck pain at baseline. It 
can be seen beforehand that it will be difficult to detect large improvements 
in much of the sample, because of these low baseline scores.

Using CTT methods it is impossible to distinguish the sample characteris-
tics from the measurement instrument characteristics. Additional informa-
tion about the study population is necessary to make it possible to interpret 
the scores on the measurement instrument, as we will see in Sections 8.4 
and 8.5.

8.3.3â•‡ Examining the distribution of scores using item response  
theory methods

Using IRT methods, information about the items and the study sample can 
be obtained at the same time (see Sections 2.5.2 and 4.6.2), thus enabling 
a distinction to be made between the instrument characteristics and study 
sample characteristics. A visual presentation of the position of the items 
(and their response categories) clearly shows whether there is a clustering 
of items at some ranges of the trait level, and large gaps between items at 
other ranges. The SF-36 Physical Scale has been examined with IRT analysis 
in a sample of patients with all kinds of chronic medical and psychiatric 
conditions who participated in the Medical Outcome Study (Haley et al., 
1994). Using the Rasch rating scale model for ordered response categories 
(Andrich, 1978), the location of the items was determined as presented in 
Figure 8.2.

There are no items between trait levels +1.5 and +3.5. This means that if 
patients improve in physical functioning in this range of the scale, the score 
on the measurement instrument would hardly change. Vice versa, the clus-
tering of items around 0 implies that the score on the measurement instru-
ment may change a lot with only a slight change in physical functioning. 
That would occur if we calculate the score on the SF-36 physical functioning 
scale as the total (or mean) item score. If the score is calculated by estimating 
the theta level (θ), the actual change on the trait level can be estimated more 
accurately, although the gain is usually small. In this IRT-based estimation 
of the score, the difficulty of the items, i.e. the unequal intervals between 
the items is taken into account. However, this estimation is rather complex, 
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and beyond the scope of this book. For a further explanation we refer to 
Embretson and Reise (2000).

Using IRT methods the distribution of patients in the sample and of items 
can be shown on the same trait level, as presented in Figure 8.3 (the same 
as Figure 4.4 in Section 4.6.2) for the Neck Disability Index (NDI; Van der 
Velde et al., 2009). This provides very useful information. Items at locations 
where there are no patients have no discriminative function in the sample. 
In addition, if there are hardly any items at the location where the largest 
part of the sample is found, patients can be insufficiently discriminated 
from each other. In Figure 8.3, one can see that there is much overlap in the 
location of the items and patients, with only a few items or response cat-
egories (thresholds) on the right side of the figure with little discriminative 
function.

8.3.4â•‡ Floor and ceiling effects
Floor or ceiling effects can occur when a high proportion of the total 
population has a score at the lower or upper end of the scale, respectively. 
Whether these effects do indeed occur, depends on the situation, which we 
will explain in this section.
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Figure 8.2	 The distribution of the items of the SF-36 Physical Functioning Scale over the 
trait level in a sample of patients with chronic medical and psychiatric conditions. 
Adapted from Haley et al. (1994), with permission from Elsevier.
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In Chapter 4 (Section 4.6.3) we already drew attention to floor and ceiling 
effects when discussing the development of a measurement instrument. In 
the development phase, one can remedy floor and ceiling effects by includ-
ing more items at the relevant end of the scale. Floor and ceiling effects are 
often encountered when an existing instrument is applied in a new target 
population.

Floor and ceiling effects pose the most problems in longitudinal analyses. 
This affects the responsiveness of an instrument, because patients who score 
at the end of the scale at baseline, say on the healthy side, can not show 
any further improvement. This means that when their health status further 
improves, this cannot be detected by the instrument. Whether there really 
is a floor or a ceiling effect depends on whether we want to discriminate 
patients in this group any further. A few examples will be presented to illus-
trate this.

Suppose we have an instrument to measure physical functioning before 
and after total knee replacement, and suppose that the most difficult item 
in this instrument is ‘ability to walk 5 km’. A large proportion of the popu-
lation will be able to do so some time after surgery, but we will not call this 
a ceiling effect if we want to label all these patients as having no functional 
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Figure 8.3	 Distribution of subjects and item difficulties on the eight-item Neck Disability 
Index on a logit scale. Van der Velde et al. (2009), with permission.
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disabilities. In that case, we are not interested in whether they are able to 
walk 40 km or run 5 km, so no new items are needed. Because we do not 
want to discriminate these patients any further, this is not considered to be 
a ceiling effect.

In an RCT, a clustering of patients at the higher end of the scale, cor-
responding to the most severe symptoms or worst stage of the disease, is 
often found at baseline. However, this is not a problem if the aim of the 
trial is to study the effects of interventions that will show improvements in 
these patients. They are expected to change in the direction of lower scores. 
However, if patients entering the trial already have rather low scores, as we 
saw in the example of the NDI in the Hoving RCT, there might be a prob-
lem, because if the intervention aims to lower the score further, there is not 
much room for improvement. So, let us take a look at what happened in the 
RCT on neck pain (Hoving et al., 2002). Figure 8.4 shows a histogram of the 
scores after 7 weeks of manual therapy.

The patients had mild neck disability before the treatment (Figure 8.1), 
but more than 50% of the population who received manual therapy had a 
score below 10 after the treatment (Figure 8.4).
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Figure 8.4	 Histogram of the scores on the NDI of 60 patients with non-specific neck pain 
after 7 weeks of manual therapy treatment (Hoving et al., 2002).
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This is an interesting situation, because now there are two possibilities:

(1)	 If all patients scoring 0 (or less than 5) indeed experience no, or negli-
gible neck disability, we do not say that there is a floor effect.

(2)	 However, if they still have neck disability, but the NDI does not pick this 
up, it is a shortcoming of the measurement instrument. This we define 
as a floor effect.

Let us take another look at Figure 8.3, which showed the distribution of 
the items of the NDI. Given that the study sample had low disability scores 
after the intervention, we can see in Figure 8.3 that there were sufficient 
items in this range of the scale (i.e. there were sufficient items that were diffi-
cult). Remember that patients who have no problems with the difficult items 
are patients with a low level of disability. So, at the lower end of the scale 
there were sufficient items to discriminate between patients, meaning that 
the patients with a low score had no problems. Assuming that the popula-
tion in the Van der Velde study (described in Section 8.3.3) was, in terms of 
neck disability, similar to the Hoving study population (described in Section 
8.3.2), we can now say that the low scores after treatment are not due to a 
floor effect, but that the patients really had low scores.

A ceiling effect might occur on the NDI when a patient starts with a 
trait level of 4 and deteriorates to a trait level of 5. In that range of the scale 
there are no items that can detect this change. This is then a ceiling effect. 
It is immediately clear that this would also affect the responsiveness of the 
scale:Â€there is a change in health status that can not be detected by the meas-
urement instrument.

Therefore, we must realize that when there are many patients at the lower or 
higher end of the scale we have to question whether this is a problem in terms 
of causing floor or ceiling effects, i.e. do we want to distinguish these patients 
further, and can we detect relevant changes in the direction of interest?

Note that a ceiling effect cannot occur if an instrument does not have a 
maximum score (e.g. the time needed to walk 10 metres).

8.4â•‡ Interpretation of single scores

In this section, we focus on the interpretation of single scores. Change 
scores will be discussed in the following section. Much can be learned about 
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the interpretation of scores when the scores on a measurement instrument 
are presented for relevant (sub)groups. Relevant in this context may be the 
scores of a healthy population, or of the general population. In addition, 
scores of patients for whom the severity of the target condition or health 
status is known can help in the interpretation of scores. At the end of this 
section, we will show how IRT analysis can be used to obtain information 
about the meaning of single scores.

8.4.1â•‡ Using the norm scores of a general population
Norm values for a measurement instrument facilitate the interpretation 
of scores on the measurement instrument. The scores on a measurement 
instrument in the general population are usually considered to be norm 
scores. These scores can be used as reference values in the comparison of 
scores for varying disease groups. For example, Salaffi et al. (2009) com-
pared the health status of patients with inflammatory rheumatic diseases 
(IRD), assessed with the SF-36, with the health status of a general popula-
tion. The results are presented in Figure 8.5. The maximum score for each 
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Figure 8.5	 Comparison of the SF-36 health survey domain scores of patients with 
Â�inflammatory rheumatic diseases (IRD) and general population normative data; 
higher scores represent a better health status. Physical functioning (PF), Role 
functionÂ€– physical aspect (RF), Bodily pain (BP), General health perception (GH), 
Mental health (MH), Role functionÂ€– emotional aspect (RE), Social functioning 
(SF), and Vitality (VT). Adapted from Salaffi et al. (2009), with permission.

  

 



8.4â•‡ Interpretation of single scores237

of the eight SF-36 domains is 100. The lighter grey columns represent the 
scores of a general population, and the dark grey columns represent the 
scores of patients with IRD. This figure shows that the general population 
scored far less than 100 for the various SF-36 domains. Suppose one had 
found a score of 60 for the ‘general health perception’ domain. Without 
these norm scores of the general population one would consider a score 
of 60 to indicate that the patients with IRD perceive substantial health 
problems, but this figure shows that a score of 60 is normal for the general 
population.

8.4.2â•‡ Examining the scores of well-known groups
In the COSMIN definition of interpretability, it is said that the meaning 
of scores can be derived from clinical and commonly understood con-
notations (Mokkink etÂ€al., 2010a). A nice example of how this works is 
provided by Wolfe et al. (2005) for the Health Assessment Questionnaire 
(HAQ), which ranges from 0 (no disability) to 3 (severe disability). To 
enhance interpretability of the scores, Wolfe etÂ€ al. (2005) presented 
scores from the HAQ disability scale (HAQ-DI) for various subgroups 
of patients, including scores for working patients versus non-working 
patients, patients who were fully independent versus patients who were 
dependent on others, and patients with no knee or hip replacement versus 
patients with a knee or hip replacement. Figure 8.6 presents the HAQ-DI 
scores for these subgroups.

By observing these scores, clinicians and researchers working in this 
field get a feeling of what a score on the HAQ-DI means, because they have 
seen many patients with rheumatoid arthritis (RA) from the respective 
subgroups. In this way, the scores get a clinical connotation. Note that all 
comparisons in this example are cross-sectional, and should therefore not 
be interpreted in a longitudinal way, as we will see in Section 8.5.1.

8.4.3â•‡ Interpretations of the scores of item response theory-based instruments
Measurement instruments developed on the basis of IRT techniques, or that 
appear to satisfy an IRT model, have a clearer interpretation. That is because 
we have more information about the ‘metrics’ of the scale, and about the 
position of patients and items on this very scale.
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The positioning of patients among the items greatly facilitates interpret-
ation of their scores, as can most easily be seen when looking at a Guttman 
scale we presented for ‘walking ability’ (see Table 2.2 in Chapter 2).

On the Guttman scale, as shown in Table 8.1, each item is scored as 0 (no, 
not able to) or 1 (yes, able to). Patients who have a total score of 4 on this 
scale are able to walk outdoors for 5 min, but not for 20 min. The scores can 
easily be interpreted from Table 8.1.

With the IRT method, as explained in Chapter 2 (Section 2.5) the item 
scores do not follow the hierarchy of the items as perfectly as on a Guttman 
scale. Therefore, we have to interpret the scores in terms of probabilities. 
However, as items and patients are located on the same scale, knowing the 
trait level of a patient makes it possible to locate the patient among the items 
(as shown in Figure 8.3).

The physical functioning scale of the SF-36 has been examined in an IRT 
analysis. A clear hierarchy of the items was found, although the fit of a Rasch 
model was not optimal (Haley et al., 1994). In Figure 8.2, the locations of the 
items were presented. Using an IRT-based estimation of the scores, account-
ing for the different intervals between the items, it is possible to make a more 
accurate estimation of the physical functioning of patients than when using 
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Figure 8.6	 Mean scores (and SDs) on the HAQ-DI scale in various subgroups of patients with 
rheumatoid arthritis (RA). Based on Wolfe et al. (2005).
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only the sum-score of the items. The correlation between the sum-score of 
the items and the IRT-based scores in the example of SF-36 physical func-
tioning was very high (0.97–0.99) (McHorney et al., 1997). Such high cor-
relations are usually found (Skrondal and Rabe-Hesketh, 2004). This implies 
that calculating a total score of items with response options on an ordinal 
scale is not as fallacious as some authors want us to believe (Wright and 
Linacre, 1989). Therefore, it is not surprising that in IRT-based measure-
ment instruments the actual value of θ (the trait level) is seldom determined. 
Instead, the scores of the items are simply added together, thereby ignor-
ing the unknown size of the interval between the items (see Figure 8.2). 
However, if there are large gaps in the distribution of items at some locations 
of the scale and substantial clustering at other locations, an estimation of θ 
might be preferred.

8.4.4â•‡ Criteria for what is considered normal
By using an instrument, one becomes familiar with its scores, and there are 
many ways in which this works. Let us take the example of blood pressure. 
Nowadays, most clinicians and other healthcare workers know how sys-
tolic and diastolic blood pressure values should be interpreted. However, in 
the past when blood pressure measurement was in its infancy, one had to 
find out what was normal and what was abnormal. There are several ways 
(Fletcher and Fletcher, 2005) to define what is normal.

Table 8.1â•‡ Six items on a fictitious ‘Walking ability’ scale with responses (0 or 1) 
from seven patients (A–G)

Patients

Walking ability A B C D E F G

Stand 1 1 1 1 1 1 0
Walking, indoors with help 1 1 1 1 1 0 0
Walking, indoors without help 1 1 1 1 0 0 0
Walking, outdoors 5 min 1 1 1 0 0 0 0
Walking, outdoors 20 min 1 1 0 0 0 0 0
Running, 5 min 1 0 0 0 0 0 0
Sum-score 6 5 4 3 2 1 0
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8.4.4.1.â•‡� Based on the distribution of values of measurement instruments  
in the general population

We all know that growth charts are used in newborns to assess whether 
their length is long or short for their age, and in which percentile of the 
distribution they are positioned considering their weight-for-height at 
a specific age. Thus, normal and abnormal is defined by the distribution 
of scores in a general population:Â€lowest 5% is considered ‘too short’ and 
highest 5% ‘too long’. In this way it is possible to assess whether the infant 
is small or large, relative to the population norm, and what is even more 
important, whether the infant has a steady and healthy development (i.e. 
does not deviate too much from his or her own percentile line). In 2006, the 
World Health Organization published new norms for developed countries 
(WHO, 2006).

8.4.4.2.â•‡ Based on elevated risk for disease
For blood pressure, the values at which the risk for cardiovascular dis-
eases starts to increase has played a major role in defining the normal 
value for blood pressure. This can be read in the background document 
of the most recent US national guidelines on the prevention, detection, 
evaluation and treatment of high blood pressure (Chobanian et al., 2003). 
However, the discussions about normal values for older people are inter-
esting. We know that blood pressure increases with age, so according to 
the ‘elevated risk’ principle, almost all older people have high blood pres-
sure. Because of reluctance to admit that more than half the population 
has high blood pressure, one may argue to change the norm values for 
older people (i.e. considering a higher cut-off point for abnormal blood 
pressure values in older persons). The latter reasoning is based on the 
‘distribution’ principle.

8.4.4.3.â•‡ Based on what is treatable
We have seen over time that blood pressure is being treated earlier (i.e. at 
lower values), because we now have medication/drugs for patients with 
slightly elevated blood pressure. This has lowered blood pressure values 
that are considered abnormal, and therefore, in this reasoning, ‘abnormal’ is 
defined as what can be treated.
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8.5â•‡ Interpretation of change scores

8.5.1â•‡ Distinction between changes and differences
Before we discuss the interpretation of change scores, it is important to 
emphasize the distinction between changes and differences. To avoid con-
fusion, we recommend to use the term ‘difference’ for cross-sectional com-
parisons between patients, and ‘change’ for intra-individual changes that 
are assessed longitudinally within patients over time. The reason why it is 
important to distinguish between changes and differences can be illustrated 
by looking again at the data in Figure 8.6, presenting HAQ-DI values for vari-
ous subgroups of patients with RA. The group of patients with RA who did 
not have a knee or hip replacement have lower (i.e. more favourable) scores 
on the HAQ-DI than the group of patients with a knee or hip replacement. 
Interpreting these data in a longitudinal manner (i.e. as a change between 
pre-surgery and post-surgery assessments) would suggest that knee or hip 
replacement surgery leads to a deterioration in health status. However, the 
data show there are differences between groups of patients with RA, and 
these groups may differ in many respects. Before knee or hip replacement 
surgery, patients are probably younger, their duration of RA may be shorter 
and severity of RA is certainly less. The patients who have had knee or hip 
replacement surgery had such a severe stage of RA that surgery was indicated. 
Therefore, it is not surprising that they have a lower HAQ-DI score, even 
after surgery, than patients with no indication for knee or hip replacement 
surgery. It is well known, however, that knee or hip replacement surgery is a 
very effective therapy that leads to large improvement in health status. That 
is why we emphasize the distinction between changes and differences.

8.5.2â•‡ Relationship with change scores on other known instruments
The interpretability of change scores resembles, to a large extent, the inter-
pretability of single scores. Again, we relate the changes observed with the 
instrument under study to changes observed with well-known instruments. 
TableÂ€8.2 shows the change in scores on a numerical rating scale for pain 
intensity (ranging from 0 indicating no pain to 10 indicating the worst pain 
imaginable) of patients with low back pain, related to their score on a glo-
bal rating scale (GRS), to indicate the perceived effect of the therapy they 
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had received. It shows that patients who reported no change in health sta-
tus changed very little in pain intensity (de Vet et al., 2007). A change in 
pain intensity of 2 points corresponded to a slight improvement, and patients 
whoÂ€reported they had completely recovered had an average change of almost 
6 points.

This example provides useful information on how change scores on 
the measurement instrument correspond to the magnitude of change, as 
Â�perceived by patients. When interpreting change scores, two values are of 
special interest:Â€the smallest detectable change (SDC) and the MIC.

8.5.3â•‡ Smallest detectable change

8.5.3.1â•‡ Smallest detectable change is based on measurement error
SDC is a concept closely related to the measurement error and the reli-
ability of measurement instruments. We have already mentioned the term 
SDC in Chapter 5 on reliability (Section 5.6.2.2). It is important to note 
that not every change on a measurement instrument can be considered 
to be a real or true change. Small changes may be due to measurement 
error, i.e. they may be comparable in size or even smaller than the dif-
ferences found when repeated measurements are performed in a stable 
population. Therefore, the SDC was defined in Section 5.6.2.2 as change 
beyond measurement error; this is a change that falls outside the limits of 

Table 8.2â•‡ The mean change scores (SD) for pain intensity scored on a numerical 
rating scale (Pain-NRS) by patients with low back pain, according to their answer 
on the global rating of perceived change

Global perceived change
Number of patients

n = 438
Change in Pain-NRS
Meanchange (SDchange)

Completely recovered 105 5.9 (2.6)
Much improved 219 4.1 (2.4)
Slightly improved 66 1.8 (2.0)
No change 28 0.7 (2.0)
Slightly worse 17 –0.4 (1.3)
Much worse 3 –2.3 (1.5)

De Vet et al. (2007), with permission.
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agreement of the Bland and Altman method. In formula, that is a change 
larger than d ̄ ± 1.96 × SDdifference or, in the absence of systematic differ-
ences, larger thanÂ€±Â€1.96 × SDdifference = ± 1.96 × √2 × SEM (standard error 
of measurement). The limits of agreement give an indication of how much 
the scores can vary in stable patients. So, a change in scores within the 
limits of agreement or smaller than the SDC can be attributed to measure-
ment error, and only outside the limits of agreement we can be confident 
these are statistically significant changes. Instead of SDC, the terms min-
imal detectable change, minimal real change or true change have also been 
used. The SDC is similar to the Reliable Change Index (RCI), defined by 
Jacobson and Truax (1991) as (pre-test scoreÂ€– post-test score)/SDdifference. 
SDdifference equals √2 × SEM, and represents the spread of the distribution 
of change scores that would be expected if no true change had occurred. 
If RCIâ•›>â•›1.96 true change has occurred. The relationship of the SDC with 
measurement error implies that when using measurement instruments 
with a small measurement error, relatively small changes can already be 
identified as real changes. However, if the measurement error is large, 
changes on the measurement instrument must be substantial before we 
can be sure they are not due to measurement error.

In Section 5.4.2.1, we have seen that the SEM can be based on Cronbach’s 
alpha and test–retest parameters. To determine the SDC, the SEM to be used 
should be based on test–retest parameters, and not on Cronbach’s alpha. 
The reason for this is that Cronbach’s alpha is assessed at a single point in 
time, and does not reflect the variation in scores when the measurement is 
assessed at different time-points. This variation may be due to biological 
variation in the patient. In addition, the mood of a patient while filling in a 
questionnaire may determine whether he/she gives more positive or nega-
tive answers in case of doubt. The variation may also be due to the measure-
ment variation in the observer who might apply the criteria strictly or less 
strictly, or due to the different days of measurements, on which the observ-
ers or patients may vary in their concentration. If we consider changes in the 
course of a disease, patients have to be measured at different time-points, 
and the above-mentioned variations are at stake. Thus, for interpreting the 
change scores the assessment of measurement error based on a test–retest 
parameter is required. We can not stress strongly enough that it is not suffi-
cient to base the SDC on Cronbach’s alpha.
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We stated in Chapter 5 (Section 5.8) that test–retest reliability should be 
assessed in a stable population. However, what is a stable population? By 
choosing a short time interval, we assume that the patient characteristics 
under study will not have changed. Sometimes patients are asked whether 
their characteristics have changed, and if so, they are excluded from the 
test–retest analysis.

Change scores are assessed over a specific time-period. In clinical research 
or practice, a change score is typically based on a pre-treatment score and 
a post-treatment score, with an interval as long as the duration of the treat-
ment period. For practical reasons (i.e. saving an extra measurement after 
a short time interval for test–retest analysis), this longer time-interval 
might also be taken to perform the test–retest analysis, provided that the 
analysis only includes a stable population. The question ‘Has your health 
status changed during this specific period?’ is usually the leading question 
with which to define a stable group of patients. In that case, the SEM and 
the limits of agreement are assessed in patients who are considered to be 
Â�stable over this longer period. Apart from the practical advantage, it makes 
sense to estimate measurement error over a longer time interval, because the 
changes we are considering also concern this longer interval. The validity of 
this approach needs further study.

The SD used to calculate the limits of agreement in these longitudinal situ-
ations is often referred to as SDchange instead of SDdifference. That is because this 
SD is derived from change data (shown in Table 8.2), and it concerns intra-
individual changes over time in a stable group. As we stated in ChapterÂ€5 
(Section 5.8), the assumption in test–retest analysis is that the patients are 
stable, and the differences in scores are due to differences in measurements 
because of different raters, different days or biological variation. Therefore, 
in reliability analysis we used the term SDdifference. Note that SDdifference and 
SDchange have the same function in the estimation of the limits of agreement.

8.5.3.2â•‡ Smallest detectable change in individual patients and in groups of patients
In Chapter 5 on reliability (Section 5.4.1.2), we explained the principles of 
reducing measurement error by performing repeated measurements and 
calculating average scores. Applying these average scores, the measurement 
error becomes smaller and this means that we can detect smaller changes 
beyond measurement error (i.e. the SDC becomes smaller). In Section 5.15, 
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we extended this reasoning to the application of measurement instruments 
in groups of patients for research purposes. The fact that measurement error 
is reduced when measuring in groups of patients, implies that the SDC is 
reduced by a factor √n, when a group of n patients is studied. It also implies 
that in comparison with clinical research, in clinical practice greater changes 
are needed to be detected beyond measurement error, or as we saw in Section 
5.15, more reliable measurement instruments are required, because deci-
sions are taken on individual patients.

8.5.4â•‡ Minimal important change

8.5.4.1â•‡ The concept of minimal important change
The MIC is defined by the COSMIN panel as ‘the smallest change in score 
in the construct to be measured which patients perceive as important’. For 
patient-reported outcomes (PRO), the MIC should be considered from the 
perspective of the patient. Determining the MIC for non-PRO instruments, 
a clinician’s perspective of which change is minimally important could be 
relevant. For example, Bruynesteyn et al. (2002) evaluated criteria for the 
scoring of X-rays of hands and feet in patients with rheumatoid arthritis. 
They wanted to enhance the interpretation of a new scoring system for 
these X-rays and used the expert opinion of five experienced rheumatolo-
gists to determine which changes on hand and foot films they considered to 
be minimally important. From a clinician’s perspective, a MIC may be one 
that indicates a change in the treatment or in the prognosis of the patient. 
The assessment of MIC has received much attention. In the interpretation of 
RCT results, two important questions need to be answered:Â€Are the results 
statistically significant? Are they clinically relevant? To assess the relevance, 
the MIC might be of interest. Particularly in very large RCTs, small improve-
ments in patients and small differences between trial arms become statis-
tically significant, but then the question is:Â€ are such small improvements 
relevant for the clinicians or for the patients? In other words, what is the 
MIC? This question is relevant in research as well as in clinical practice.

8.5.4.2â•‡ Methods to determine minimal important change
There is no consensus on the best method to determine MIC. In this sec-
tion, we will explain the most frequently used methods, but for an extensive 
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overview of the existing methods, we refer to Crosby et al. (2003). In the lit-
erature, anchor-based and distribution-based approaches are distinguished. 
In this section we will describe the essentials of both approaches, and explain 
why we favour the anchor-based approach.

The anchor-based approach uses an external criterion, or anchor, i.e. a 
well interpretable measurement instrument to determine what patients or 
their clinicians consider as important improvement or important deterior-
ation. Anchor-based methods assess which changes on the measurement 
instrument correspond with the MIC defined on the anchor.

An example of an anchor-based approach is the mean change method, in 
which the MIC is defined as the mean change in score on the measurement 
instrument in the subcategory of patients who are minimally importantly 
changed, according to the anchor. Looking at Table 8.2, the MIC of the Pain-
NRS could, for example, be defined as the mean change in scores in patients 
who consider themselves to be ‘slightly improved’. The MIC would then be 
1.8 points.

Another anchor-based method is the receiver operating characteris-
tic (ROC) method, which resembles the analysis of a diagnostic study. We 
mentioned the ROC method in Chapter 6 on validity (Section 6.4.1) to 
assess criterion validity. Using this approach to assess MIC, the health sta-
tus measurement instrument at issue is considered as the diagnostic test, 
and the anchor functions as the gold standard. The anchor distinguishes 
patients with important improvement or deterioration from patients with no 
important change. The instrument’s sensitivity is the proportion of import-
antly improved (or deteriorated) patients, according to the anchor, that are 
correctly identified as such by the health status measurement instrument 
(based on a specific cut-off value on the instrument). Its specificity is the 
proportion of patients with ‘no important change’ (according to the anchor) 
that is correctly identified as such by the health status measurement instru-
ment. As the two groups of ‘importantly changed’ and ‘not importantly 
changed’ patients will overlap in their change scores on the measurement 
instrument, we will have to choose a cut-off point. In diagnostic studies, the 
optimal ROC cut-off point is often chosen, i.e. the value for which the sum 
of the proportions of misclassifications ([1-sensitivity] + [1-specificity]) is 
smallest. In analogy, the MIC is defined as this optimal ROC cut-off point. 
An example of the ROC method can be found in Section 8.5.4.3.
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The advantage of anchor-based methods is that the concept of ‘minimal 
importance’ is explicitly defined and incorporated in the method. However, 
as will be explained later, these methods fail to take into account the vari-
ability of the scores of the instrument in the sample. For example, the mean 
change method only uses the mean value in that group, irrespective of how 
large the SD is. If the SD of this group had been 5.0 instead of 2.0 (in Table 
8.2) then change values far from 1.8 may also occur in patients who said that 
they had slightly improved. The ROC method searches for the optimal cut-
off points, irrespective of how much misclassification occurs.

Distribution-based approaches are based on distributional characteristics 
of the sample, and express the observed change in the measurement instru-
ment under study to some form of variation to obtain a standardized metric. 
A frequently used parameter is the effect size, a parameter that relates the 
observed change to the sample variability (change/SDbaseline) (see Chapter 7, 
Section 7.5.1). One might, for example, state that an effect size of 0.5 would 
correspond to a MIC; in other words, the MIC is defined as 0.5 SDbaseline 
(Norman et al., 2003). However, it might seem odd to relate the change to 
the heterogeneity of the study population in which it is determined. This 
implies that a change might be considered important if it is observed in a 
homogeneous study sample, whereas the same magnitude of change would 
not be considered important if it was observed in a heterogeneous study 
sample.

Some authors relate the observed change to the SEM. Threshold values of 
1â•›×â•›SEM and 1.96 × SEM have been proposed to reflect MIC (Crosby et al., 
2003). Note that they link the MIC to a parameter of measurement error.

The major disadvantage of all methods that use the distribution-based 
approach is that they do not, in themselves, provide a good indication of the 
importance of the observed change. For that reason, in our opinion, they do 
not qualify as methods to assess MIC. Therefore, anchor-based methods are 
preferred.

Crosby et al. (2003) plead for a combination of anchor-based and distri-
bution-based methods to take advantage of both an external criterion and 
a measure of variability. Agreeing with Crosby et al., we designed a method 
that integrated both approaches, which we called the visual anchor-based 
MIC distribution (De Vet et al., 2007). This method is presented in the next 
section.
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8.5.4.3.â•‡� The visual anchor-based minimal important change distribution method
We will first describe the three steps in this method, followed by an example.

Step 1:Â€Divide the study sample according to the anchor
The visual anchor-based MIC distribution is based on the ROC method, 
as described above. Using an anchor, we divide the study sample into three 
groups:Â€patients that have importantly improved, not importantly changed 
and importantly deteriorated patients.

Step 2:Â€Plot the distribution of change scores
We then plot distributions of the change scores on the health status meas-
urement instrument of these three groups (Figure 8.7). Distributions of the 
improved patients and deteriorated patients are presented on the left-hand 
side, and the distribution of the not importantly changed patients is pre-
sented on the right-hand side. The number of patients in the unchanged, 
improved and deteriorated group may differ. However, we do not want the 
sample sizes of these three groups to influence the curves and cut-off points. 
Therefore, the areas under the three curves should be made equal. This is 
achieved by using the proportional frequencies instead of the absolute num-
bers. We assess the MICs for improvement and for deterioration separately, 
because these might differ (Crosby et al., 2003).

Step 3:Â€Determine the cut-off point
In Figure 8.7, we see that the distributions overlap. For example, a change 
score of 0 occurs in the sample of patients who have importantly improved 
according to the anchor, but also in the sample of patients who are unchanged. 
Because of this overlap, the challenge is to find a cut-off point that leads to 
the minimal amount of misclassification. The shaded areas show the propor-
tion of misclassified patients. We consider the optimal ROC cut-off point to 
be the MIC value. This is the value for which the sum of the shaded areas is 
smallest (i.e. in diagnostic terms, the value of [1-sensitivity] + [1-specificity] 
is smallest). On the left-hand side, we find false-negative misclassifications 
(i.e. according to the anchor patients have improved, but according to the 
cut-off value on the measurement instrument they have not improved). On 
the right-hand side, we find the false-positive misclassifications. According 
to the anchor, these patients have not changed, whereas according to the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8.5â•‡ Interpretation of change scores249

cut-off value on the measurement instrument they seem to have improved. 
Note that proportions of misclassifications, instead of the absolute numbers 
of misclassified patients, are used to decide about the optimal cut-off points. 
That was the reason why we needed equal surfaces under the three curves 
in step 2. Note that the assumption for the optimal ROC cut-off point is that 
false-positive and false-negative results are equally weighted.

An example
We will illustrate the various steps with an example, determining the MIC 
for improvement for an instrument called the PRAFAB questionnaire 
(based on Hendriks et al., 2008), which aims to assess the impact of stress 
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Figure 8.7	 Graph of the anchor-based MIC distribution, with indication of the ROC cut-off 
point for improvement and deterioration. With kind permission from Springer 
Science+Business Media:Â€De Vet et al. (2007).
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urinary incontinence (UI) in women. (The database and various steps in 
the analysis can be found at www.clinimetrics.nl) It consists of five items, 
which measure protection, amount, frequency, adjustment and body image, 
abbreviated as PRAFAB. The score for each item ranges from 1, indicating 
no problem, to 4, indicating severe problems. Therefore, the PRAFAB score 
ranges from 5 to 20 points, with a higher score indicating more problems. 
A total of 534 women with stress incontinence who received pelvic floor 
muscle training completed the PRAFAB questionnaire before treatment 
and after 12 weeks of treatment. After treatment, they also rated their con-
dition on a GRS by answering the question:Â€‘How does your current condi-
tion compare to how it was before you started the treatment?’. Patients were 
classified into nine distinct groups:Â€ 1 = completely recovered, 2 = much 
improved, 3 = moderately improved, 4 = slightly improved, 5 = unchanged, 
6 = slightly deteriorated, 7 = moderately deteriorated, 8 = much deterio-
rated, 9 = worse than ever.

Table 8.3 shows the relationship between the scores on the GRS and the 
change in PRAFAB score; the correlation between the two scores wasÂ€–0.88 
(Spearman’s correlation coefficient).

Step 1:Â€Divide the study sample according to the anchor
Patients who had moderately improved, much improved or completely 
recovered were considered as ‘importantly improved’. Patients who 
Â�indicated no change or experienced a slight improvement or deteriorÂ�
ationÂ€ were considered as ‘not importantly changed’. In Assignment 8.2, 
we ask you to repeat the analysis with another definition of important 
change.

Step 2:Â€Plot the distribution of change scores
Figure 8.8 shows the distribution of the patient group who had import-
antly improved on the anchor on the left-hand side (scores 1, 2 and 3), 
and the distribution of the patient group with no important improvement 
(scores 4, 5 and 6) on the right-hand side. To obtain curves of similar size, 
the relative frequency distribution (proportion) of change scores on the 
PRAFAB for the ‘importantly improved’ group and the ‘not importantly 
improved’ group are used, as presented in Table 8.4. To obtain the left-hand 
curve, negative values should be given to change scores of the ‘importantly 
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Table 8.3â•‡ The mean difference (T0Â€– T2) in the PRAFAB scores by GRS at 12 
weeks follow-up for the total group of patients with stress urinary incontinence

Global rating scale
Number of patients

n = 534

Change in PRAFAB 
score (T0Â€– T2)
Meanchange (SDchange)

1â•‡ Completely recovered 124 6.51 (1.84)
2â•‡ Much improved 86 4.52 (1.71)
3â•‡ Moderately improved 86 3.57 (1.33)
4â•‡ Slightly improved 49 2.55 (0.79)
5â•‡ Unchanged 139 0.82 (0.98)
6â•‡ Slightly deteriorated 39 –0.36 (1.06)
7â•‡ Moderately deteriorated 7 –2.29 (0.76)
8â•‡ Much deteriorated 3 –4.00 (1.73)
9â•‡ Worse than ever 1 –6.00 (–)

Importantly improved (1, 2, 3) 296 5.08 (2.09)
Not importantly improved (4, 5, 6) 227 0.99 (1.33)
Importantly deteriorated (7, 8, 9) 11 –3.09 (1.58)

Positive scores indicate an improvement of the impact of the incontinence.
Based on Hendriks et al. (2008), with permission.
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reported an important improvement (n = 296) compared with those with no 
important improvement (n = 227) on the anchor (GRS). With kind permission 
from Springer Science+Business Media:Â€De Vet et al. (2007).
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improved’ group. This results in the typical graph of the anchor-based MIC 
distribution.

Step 3:Â€Determine the cut-off point
In order to determine the optimal ROC cut-off point, we need information 
about sensitivities and specificities at all potential cut-off points. These are 
presented in Table 8.4, together with the sum of 1-sensitivity and 1-Â�specificity 
(i.e. the proportion of misclassification). For example, when we take a 

Table 8.4â•‡ Change scores on the PRAFAB of ‘importantly improved’ and ‘not importantly 
changed’ groups, and corresponding values for sensitivity and specificity

Change
score
T0Â€– T2

‘Importantly 
improved’ 
group
N proportion

‘Not 
importantly
changed’ group
N proportion

ROC cut-
off
point on
PRAFAB Sens Spec 1-Sens 1-Spec

Sum of 
[1-Sens] 
+ 
[1-Spec]

11 0 0.000 0 0.000 11.00 0.000 1.000 1.000 0.000 1.000
10 4 0.014 0 0.000 9.50 0.014 1.000 0.986 0.000 0.986

9 16 0.054 0 0.000 8.50 0.068 1.000 0.932 0.000 0.932
8 25 0.084 0 0.000 7.50 0.152 1.000 0.848 0.000 0.848
7 31 0.105 0 0.000 6.50 0.257 1.000 0.743 0.000 0.743
6 43 0.145 0 0.000 5.50 0.402 1.000 0.598 0.000 0.598
5 51 0.172 1 0.004 4.50 0.574 0.996 0.426 0.004 0.430
4 48 0.162 5 0.022 3.50 0.736 0.974 0.264 0.026 0.290
3 41 0.139 22 0.097 2.50 0.875 0.877 0.125 0.123 0.248
2 37 0.125 50 0.220 1.50 1.000 0.656 0.000 0.344 0.344
1 0 0.000 67 0.295 0.50 1.000 0.361 0.000 0.639 0.639
0 0 0.000 59 0.260 –0.50 1.000 0.101 0.000 0.899 0.899

–1 0 0.000 13 0.057 –1.50 1.000 0.044 0.000 0.956 0.956
–2 0 0.000 10 0.044 –2.50 1.000 0.000 0.000 1.000 1.000
–3 0 0.000 0 0 –3.50 1.000 0.000 0.000 1.000 1.000
–4 0 0.000 0 0 –4.50 1.000 0.000 0.000 1.000 1.000
–5 0 0.000 0 0 –5.50 1.000 0.000 0.000 1.000 1.000
–6 0 0.000 0 0 –6.50 1.000 0.000 0.000 1.000 1.000
–7 0 0.000 0 0 –7.00 1.000 0.000 0.000 1.000 1.000
Total 296 1.000 227 1.000

Sens, sensitivity; Spec, specificity.
Based on Hendriks et al. (2008), with permission.
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Â�cut-off value of 6.5 points, all patients who are ‘not importantly improved’ 
according to the anchor are correctly classified by the PRAFAB (i.e. the 
specificity is 1, and 1-specificity is 0). At this cut-off value of 6.5 points, 
the sensitivity is 0.257, meaning that about one-quarter of the ‘importantly 
improved’ group is correctly classified [(4 + 16 + 25 + 31)/296]. We also 
see that in Figure 8.8 the largest part of the distribution on the left-hand 
side is below 6.5 points. At a cut-off value ofÂ€–0.5, the sensitivity is 1 (i.e. all 
patients who consider themselves to be importantly improved, according to 
the anchor, are correctly classified as improved by the PRAFAB). The speciÂ�
ficity is 0.101 (23 of 227), and 1-specificity is 0.899, meaning that Â�according 
to the anchor most of the ‘not importantly changed’ patients are falsely clas-
sified as importantly changed by the PRAFAB. The least misclassifications 
occur at a cut-off value of 2.5. (Note that 2.5 is not a change score that 
occurs by subtracting the pre- and post-PRAFAB scores. Using half scores 
is a characteristic of ROC analysis in SPSS. We did not try to change this 
because it facilitates interpretation of the MIC:Â€ a two-point difference is 
less than the MIC, while a three-point change exceeds the MIC.) The ROC 
graph (Figure 8.9) is obtained by plotting sensitivity versus 1-specificity at 
every possible cut-off point (i.e. change score) on the PRAFAB.

Using the change score of 2.5 as cut-off point, the sensitivity is 0.877 
and the specificity is 0.875. This means that the PRAFAB can correctly dis-
tinguish between patients who consider themselves importantly improved 
on the GRS and those who do not. This also means that the PRAFAB is 
a responsive measurement instrument for this purpose (see Sections 7.3 
andÂ€7.4)

Interpreting the anchor-based minimal important change distribution
The anchor-based MIC distribution graph contains a number of interest-
ing features. First, it shows how well an instrument distinguishes between 
patients who, according to the anchor, are importantly improved or import-
antly deteriorated from those with no important change. Figure 8.10 presents 
two examples of anchor-based MIC distributions.

On the left-hand side, we can see a high correlation between the anchor 
and measurement instrument. On the right-hand side, the correlation is 
much lower, which results in a much flatter curve, with much more over-
lap. Hence, in the left situation, the instrument is much better capable of 
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distinguishing between patients who, according to the anchor, are import-
antly improved or importantly deteriorated and those that are not import-
antly changed. As can be seen in this figure, the value of the MIC is the same, 
so if the MIC value was presented without the graph, we would not see the 
underlying distributions.

Secondly, the graph of the anchor-based MIC distribution shows the con-
sequences of a specific cut-off point for the amount of misclassification. The 
optimal ROC cut-off point minimizes the misclassification. However, there 
might be situations in which we consider false-positive misclassifications to 
be more severe than false-negative misclassifications. Suppose, for example, 
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Science+Business Media:Â€De Vet et al. (2007).
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that patients with stress UI who do not show an important improvement after 
pelvic floor muscle training are referred for surgery, and this is decided on 
the basis on their PRAFAB score. In this situation, we may be more reluctant 
to refer patients who do not need surgery than to deny surgery for patients 
who really do need it. In this case, we might give false positives more weight 
than false negatives. This means that the cut-off point in Figure 8.7 should 
be moved upwards. On the left-hand side of the figure (false negatives), we 
then can see how many more patients who actually need surgery will not 
receive it (or it will be postponed).

Thirdly, the visual anchor-based MIC distribution, as presented in 
Figure 8.7, shows differences in the location and shape of the curves of 
the ‘improved’ and ‘deteriorated’ patients. From such a graph, we can 
see whether the MIC values for deterioration and improvement differ. In 
FigureÂ€8.7, even without numbers on the y-axis, it is evident that if the opti-
mal ROC cut-off point was used, the MIC for deterioration is greater than 
the MIC for improvement. This means that negative changes in scores must 
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be greater than positive score changes before patients report an important 
change. For a more elaborate discussion about the strength and limitations 
of this approach, we refer to De Vet et al. (2007; 2009).

8.5.4.4â•‡ Minimal important change is a variable concept
Now that we have discussed a number of methods to assess MIC values, and 
have seen which choices have to be made in this process, one can imagine a 
measurement instrument does not have a fixed MIC value.

Minimal important change depends on the type of anchor
All kinds of anchors can be used, from the perspectives of both the patient 
and the clinician, and even clinical outcomes can be used as an anchor. 
For example, haemoglobin level and response to treatment were used as 
anchors in the assessment of the MIC value for the anaemia and fatigue 
subscales of the functional assessment of cancer therapy (FACT) question-
naire (Cella etÂ€ al., 2002). These clinical outcomes might be a reasonable 
anchor for instruments assessing the functioning of patients, but less suit-
able as an anchor for instruments that assess the impact of disease on a 
patient’s health-related quality of life (HRQL). From a patient perspective, 
a GRS (as presented in Tables 8.2 and 8.3) is often used as the anchor to 
assess perceived changes in (specific aspects of) health status. Such a GRS 
is closely linked to the phrase ‘perceived important by patients’ in the def-
inition of MIC, and to the simple question patients are asked in clinical 
practice:Â€‘Do you feel better?’.

However, critical remarks have been made about such a transition ques-
tion, first with regard to its reliability (Norman et al., 1997; Guyatt et al., 
2002), because it is only one question, and it tends to depend more on 
the most recent measurement than on the first measurement, which is 
an indication of recall bias. In our opinion, the patient’s global rating of 
change is still a useful anchor with which to define MIC. However, we 
share these concerns, and therefore recommend that further research 
should be carried out to find a more appropriate anchor for the perspec-
tive of the patient.

Clinicians may differ from patients in their opinions about what is import-
ant. As a consequence, clinician-based anchors may result in different MIC 
values than patient-based anchors. Kosinski et al. (2000) used five different 
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anchors to estimate the MICs for the SF-36 in patients with RA. They found 
different MIC values, depending on the anchor used, thus supporting the 
statement that the MIC depends on the type of anchor.

Minimal important change depends on the definition of ‘minimal 
important change’ on the anchor
In the definition of minimal importance on the anchors, some authors tend 
to emphasize ‘minimal’, while others stress ‘important’ (Sloan et al., 2005). 
For example, studies using a patient GRS for perceived change as an anchor 
have used different definitions of ‘minimal importance’ for this anchor. 
Some defined a slight change on the anchor as ‘minimally important’, con-
sisting of the categories ‘a little worse/better’ and ‘somewhat worse/better’; 
other authors have defined ‘minimal importance’ as a greater change on the 
anchor, and have set the cut-off point for MIC between ‘slightly improved’ 
and ‘much improved’, or at ‘moderate improvement’. There is no right or 
wrong in this respect:Â€ it is a decision made by patients about what they 
consider to be important. However, two remarks must be made. First, the 
decision about MIC is often taken by the researcher, and not by patients, 
because they decide which category they define as minimally important. 
Secondly, the reference standard is usually based on the ‘amount’ of change 
and, remarkably, little research has focused on the ‘importance’ of the 
change. Awaiting the results of further research, decisions will therefore 
remain arbitrary.

Minimal important change depends on baseline values and  
patient groups
Several studies have shown that the MIC value of a measurement instru-
ment depends on the baseline score on that instrument (Crosby et al., 2003). 
Patients with a high score at baseline (indicating higher severity) must often 
have a change of more points than patients with lower scores at baseline to 
indicate an important change. Therefore, percentage of change from base-
line has been proposed as a more stable measure for MIC values than abso-
lute changes. This dependence on severity of the disease is also found in 
comparisons of MIC values for different subgroups of patients. For example, 
Bruynesteyn et al. (2002) found different MIC values, depending on the dis-
ease activity (mild versus high disease activity).
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Minimal important change depends on the direction of change
There is still discussion about whether the MIC for improvement is the same 
as the MIC for deterioration. In some studies the same MIC is reported for 
patients who improve and patients who deteriorate, but others studies have 
observed different MIC values for improvement and deterioration (Crosby 
et al., 2003). Therefore, it is recommended to assess a separate MIC value for 
improvement and deterioration.

As the MIC is dependent on the above-mentioned factors, it is an illusion 
that the MIC of a measurement instrument will be a fixed value. Various 
authors have therefore suggested there should be a range of MIC values to 
account for this diversity. Moreover, it has been recommended that different 
anchors and different methods are used (Revicki et al., 2008) to give reason-
able limits to MIC.

We recommend an anchor-based method, and have explained that the vis-
ual anchor-based MIC distribution, in particular, gives a lot of extra infor-
mation that is useful for the proper interpretation of a MIC value. It is wise 
to use different anchors, if available. However, it is important that the anchor 
reflects the construct that the instrument under study aims to measure. 
When the resulting range of MIC values is so large that it loses its clinical 
meaningfulness, it is better to interpret change scores by presenting MIC 
values for different anchors or for different situations, i.e. showing its diver-
sity, rather than hiding it.

8.5.5â•‡ Distinction between the smallest detectable change and the minimal 
important change

We have defined SDC as ‘the smallest change that can be detected by the 
instrument, beyond measurement error’. MIC was defined as the smallest 
change in score in the construct to be measured that is perceived as import-
ant by patients, clinicians or relevant others. Considering these definitions, 
it is clear that these are different concepts. Confusion on this issue has been 
generated by the use of distribution-based methods to assess the MIC value. 
Some of the distribution-based methods that have been proposed as param-
eters for MIC are conceptually more closely related to the SDC than to the 

    

 

 

 



8.5â•‡ Interpretation of change scores259

MIC. Wyrwich et al. (1999) evaluated whether the 1 × SEM criterion can 
be applied as a proxy for MIC. Wyrwich (2004) showed that if the cut-off 
point for ‘minimal importance’ on the anchor is set between ‘no change’ and 
‘slightly changed’ (i.e. the first category above no change), the value of the 
MIC approximates the value of the SEM. As we saw in Section 5.3, the SEM 
is a parameter of measurement error. Therefore, linking changes to the SEM 
refer more to detectable change beyond measurement error (i.e. SDC), than 
to important change.

Norman et al. (2003) performed a systematic review of 38 studies, includ-
ing 62 effect sizes, and observed, with only a few exceptions, that MICs for 
HRQL instruments were close to an effect size of 0.5 (i.e. half an SD). They 
explained their findings of 0.5 SD by referring to psychophysiological evi-
dence that the limit of people’s ability to discriminate is approximately 1 
part in 7, which is very close to half an SD. Thus, this criterion of 0.5 SD may 
be considered as a threshold of detection, and therefore corresponds to an 
SDC, rather than to MIC.

It is important to make the distinction between MIC and SDC. Assessing 
the MIC by a parameter of SDC is like saying that what we cannot detect is not 
important (by definition) (De Vet and Terwee, 2010). A direct consequence 
of this reasoning is that all measurement instruments are adequate, because 
they all can detect MIC, but we know that this is not true. Such a reasoning 
would impede further improvement of measurement instruments. For a bet-
ter interpretation of change scores, both the SDC and the MIC are important 
benchmarks on the scale of the measurement instrument. Moreover, appre-
ciating the distinction, we can answer the important question:Â€is a measure-
ment instrument able to detect changes as small as the MIC value?

Figure 8.11 shows how changes should be interpreted in various situations. 
Figure 8.11(a) represents the situation that the SDC value is smaller than the 
MIC. In other words, the measurement error is sufficiently small to detect MIC 
values at the individual level. Change values lying between the SDC and MIC 
are considered statistically significant but not important. Figure 8.11(b) repre-
sents the situation that SDC is larger than MIC. Change values lying between 
the MIC and SDC are considered important by patients, but are not statistic-
ally significant, i.e. they cannot be distinguished from measurement error.

It is interesting to discuss Guyatt’s responsiveness ratio again at this point. 
As shown in Chapter 7 (Section 7.5.3) Guyatt’s responsiveness ratio relates 
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the MIC to the SDchange in a stable group of patients. We argued that Guyatt’s 
responsiveness ratio is an inadequate measure of responsiveness because 
it lacks to assess the validity of change scores. However, Guyatt’s respon-
siveness ratio is quite informative for the interpretability of a measurement 
instrument. As SDC = 1.96 × SDchange, it can be shown that if the Guyatt 
responsiveness ratio is larger than 1.96, then the MIC value lies outside the 
limits of agreement, and thus is larger than the SDC. Thus, Guyatt’s respon-
siveness ratio relates the MIC to the measurement error, in a similar way as 
we do in Figure 8.11.

Many authors use the Guyatt responsiveness ratio with observed change 
in the numerator instead of MIC. In that case, the formula of Guyatt respon-
siveness ratio resembles the formula for RCI as discussed in Section 8.5.3.1. 
However, there is a conceptual difference, for the RCI is used to provide 
information on the magnitude of change, while the Guyatt responsiveness 
ratio (with MIC in the numerator) gives information on the interpretability 
of the measurement instrument.

Change NOT statistically significant
and NOT important 

(a)

(b)

Change statistically significant AND important

Change statistically significant, but NOT important

SDC

MIC

no change maximum change

Change NOT statistically significant
and NOT important 

Change statistically significant AND important

Change important, but can NOT be distinguished from
measurement error 

SDC

MIC

no change maximum change

Figure 8.11	(a) Interpretation of change when MIC is larger than SDC. (b)Interpretation of 
change when MIC is smaller than SDC. Reprinted from De Vet and Terwee (2010), 
with permission from Elsevier.
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Returning to our example of the PRAFAB, we can compare the MIC value 
of 2.5 with the SDC. In this population, we had no data on test–retest ana-
lysis with a very short interval. Therefore, we calculated the SDC based on the 
patient group who experienced no change in impact of urine incontinence over 
the 12-week period. Table 8.3 shows that there were 139 patients in this cat-
egory. They showed a mean change of 0.82 points and SD of 0.98. Calculating 
the SDC as 1.96 × SDchange amounts to 1.92. This means that the SDC is smaller 
than the MIC. Therefore, the PRAFAB is able to detect MIC at individual level. 
It has to be noted that for most measurement instruments the SDC is greater 
than the MIC. This implies that these instruments are not able to detect MIC 
at individual level on the basis of single measurements. However, taking the 
mean value of multiple measurements will make these instruments suitable 
for application in clinical practice. As noted in Sections 5.15 and 8.5.3.2, these 
instruments are often very suitable for research purposes, where the measure-
ment error is reduced when groups of patients are studied.

8.5.6â•‡ Response shift
Now that we have learned more about the interpretation of change scores, we 
will discuss response shift. In clinical practice and research, patients are often 
monitored over time, and they are repeatedly measured to assess the clin-
ical course of their disease or their health status. During these longitudinal 
assessments, characteristics should be measured with the same measurement 
instruments. For example, MRI scans are used, among other things, for iden-
tifying changes in brain tissue of patients with multiple sclerosis. The MRI 
techniques are improving continuously over time. Among other things, new 
contrast agents are used to detect a wider array of metabolites, new criteria 
and rating scales are proposed to increase sensitivity while maintaining the 
specificity. Usually it is known when changes in the procedures or scoring 
methods have occurred. It goes without saying that for an appropriate evalu-
ation of the progress of multiple sclerosis the same techniques should be used 
over time. This also holds if disease progression is evaluated by PRO meas-
ures. However, in the case of PROs, subtle changes may occur that are much 
more difficult to detect. These subtle changes concern altered ways in which 
patients perceive their health status, and interpret and respond to questions, 
based on cognitive psychological mechanisms. This is called response shift.
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Response shift can occur in all patient-reported measures. It was defined 
by Sprangers and Schwartz (1999) as a change in the meaning of self-evalu-
ation of a target construct as a result of:

(1)	 redefinition of the target construct (reconceptualization)
(2)	 change in the respondent’s values (reprioritization, i.e. change in import-

ance of domains substituting the target construct) or
(3)	 change in the respondent’s internal standards of measurement (scale 

recalibration).

In order to illustrate these rather abstract descriptions, we will provide an 
example of each.

During the clinical course of their disease, there may be a change in 
the way patients assess their situation. This is illustrated by the following 
example. Let us consider patients who suddenly become wheelchair-bound 
because of a spinal cord injury. At first, they will probably rate their health 
status as very poor because of losing their walking ability. However, after a 
while, they might have accepted their physical limitations to some extent, 
and have possibly set new goals and challenges. They will then rate their 
perceived health status as better, whereas in reality their health condition 
has not changed.

(1)	 Reconceptualization. One can imagine that being wheelchair-bound 
they totally ignore walking ability in their assessment, i.e. they define 
health status in such a way that walking ability is no longer part of it. 
This is called reconceptualization. Thus, the construct that they assess 
has changed.

(2)	 Reprioritization. When asked about their health status, other aspects 
than walking ability have become more important. For example, they 
may consider social contacts more important than they did in the past. 
This is an example of reprioritization.

(3)	 Scale recalibration. Suppose that these patients also develop decubitus. 
At the first assessment, patients have rated the severity of their pain with 
a score of 7 on a 10-point scale. Between the first and second assess-
ment, some of these patients might suffer more pain than they have 
ever experienced before. At the second assessment, these patients might 
score their pain as 9 or 10. However, they realize that their pain during 
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the first assessment was much lower than 7 points (e.g. only 4 or 5 points 
on the 10-point scale) if they had used the same reference framework as 
they used now. This is called scale recalibration.

In all these examples, the construct that is measured (1 and 2) or the scale 
that is used to rate the response (3) has changed over time in the patient’s 
mind. As can be seen from the definition, response shift can occur in all 
patient-reported measurements, and especially when patients are asked to 
make an overall assessment. For example, the question ‘Do you have dif-
ficulty with a long walk?’ requires careful consideration:Â€ the patient has 
to think about what ‘difficulty’ is and about what is meant by ‘a long walk’. 
These undefined formulations can result in different interpretations over 
time. The question ‘Can you walk for 10 minutes?’ requires less consider-
ation and evaluation, and is therefore less prone to response shift (Schwartz 
and Rapkin, 2004).

8.5.6.1â•‡ A conceptual model of response shift
The original conceptual model proposed by Sprangers and Schwartz 
(1999), presented in Figure 8.12, shows how response shift affects ratings 
of perceived quality of life as a results of changes in health status. Although 
it has been adapted and extended, resulting in even more complex mod-
els (Rapkin and Schwartz, 2004), the original model gives much insight 
into what response shift is and what causes it. Note that this model refers 
to quality of life measurements, but also applies to other patient-reported 
measurements.

The model has five components:Â€the catalyst, the antecedents, mechanisms, 
response shift and perceived quality of life. The catalyst is a change in health 
status. The antecedents refer to stable patient characteristics, which may 
affect the patients’ assessments and responses on how the change in health 
status has affected their perceived quality of life. Examples are age, educa-
tion, expectations and personality characteristics such as optimism, sense of 
control and self-esteem. For example, an optimistic patient might consider 
a slight decrease in physical functioning to have less impact on health status 
than a pessimistic patient might do. The mechanisms encompass the more 
dynamic processes that might affect a patient’s rating of perceived qual-
ity of life, such as coping, reprioritizing goals and reframing expectations. 
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An example of the latter is an answer that is often heard:Â€ ‘considering my 
age, or considering the stage of my disease, I am doing quite well’. These 
specific mechanisms of adaptation lead to response shift. The mechanisms 
refer to behavioural, cognitive and affective processes to accommodate the 
change in health status. They can be seen as coping mechanisms applied to 
deal with a change in health status. Patients do this by reconceptualizing 
and reprioritizing their health status (i.e. domains of health status that are 
heavily affected are completely neglected, or considered to be less import-
ant, respectively). Patients may also change their scaling. If they expect their 
health status to become worse, they recalibrate their scale to leave room for 
further deterioration.

8.5.6.2â•‡ Assessment of response shift
In the following section, we will describe a number of methods that are help-
ful to determine response shift. For a complete overview, we refer to Barclay-
Goddard et al. (2009).

Qualitative methods
Much insight into response shift is obtained by means of qualitative methods. 
Interviewing patients provides direct information about how they interpret 
questions and how they choose their answers. From cognitive psychology 

Antecedents

e.g. •  sociodemographics
•  personality
•  expectations
•  spiritual identity

Catalyst Mechanisms Response shift Perceived QOL

e.g. •  coping i.e. change in
•  social comparison •  internal standards
•  social support •  values
•  goal reordering •  conceptualization
•  reframing expectations
•  spiritual practice

Figure 8.12	A theoretical model of response shift and perceived quality of life. Reprinted from 
Sprangers and Schwartz (1999), with permission from Elsevier.
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and survey methodology, it is known that at least four actions are required 
from respondents in order to answer a question:Â€they must comprehend the 
question, retrieve necessary information from memory, decide on which 
information is needed to answer the question, and respond to the question 
or choose the adequate response option (Tourangeau et al., 2000). It has been 
shown that the response shift takes place during all four actions required to 
answer a question (Bloem et al., 2008).

The ‘three step test interview’, combining a ‘think aloud’ method and a 
cognitive interview is a suitable method for this type of qualitative research. 
It starts with patients completing the questionnaire while thinking aloud. In 
the second step, the interviewer asks questions concerning the items about 
which the patient was apparently thinking, without talking. In the third 
step, the aim is to collect more information about the cognitive processes. 
For example:Â€ Which information was taken into consideration? How did 
the weighing up process go? What was the point of reference? We refer to 
Westerman et al. (2008) and Bloem et al. (2008) for illustrative examples of 
such qualitative analyses of response shift.

Quantitative methods
The first method to be described is the ‘then-test’. Suppose, the patient first 
completes a questionnaire about health status (the pre-test) and after some 
time when the patient’s health status has changed, a second questionnaire 
is completed (the post-test). At the post-test measurement, the patient is 
asked to complete the questionnaire again for his pre-test health status. This 
is called the ‘then-test’. Hence, the ‘then-test’ is a retrospective assessment 
of the pre-test, which is assessed at the same time as the post-test. As both 
the ‘then-test’ and the post-test take place at the same time, it is assumed 
that the same standards, values and concepts will be used, thus accounting 
for response shift. The difference between the ‘then-test’ and the pre-test is 
referred to as the response shift effect.

Jansen et al. (2000) tried to quantify the response shift in the Rotterdam 
Symptom Checklist by using the ‘then-test’ in patients before and after radio-
therapy for breast cancer. Significant scale recalibration effects were observed 
in areas of fatigue and overall quality of life. A ‘then-test’ embedded in quali-
tative research provides an enormous amount of information about adaptive 
mechanisms used in the responses to questions (Westerman et al., 2008).
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Individualized measures
In Chapter 3, we mentioned the SEIQOL-DW as a measurement instrument 
to individually weigh the importance of domains in HRQL. The patients are 
asked to quantify the relative importance of all domains. Over time, repri-
oritization is reflected by a change in the magnitude of the domains chosen, 
and reconceptualization occurs when one domain is completely neglected at 
a second assessment.

Although these methods can indicate that a response shift has occurred in 
a particular patient, they can not easily be converted into a numerical value 
of the response shift effect.

Factor analysis
We have seen in Chapter 6 on validity (Section 6.5.2) that confirmatory 
factor analysis tests the factor structure of a construct. In Section 6.5.3.3, 
we discussed how factor analysis could be used to test measurement invari-
ance after the translation or cultural adaptation of a questionnaire. Using 
data from the pre-test and post-test, factor analysis can also be used to 
test whether, and to what extent, response shift has occurred. In fact, it is 
the assessment of measurement invariance (see Chapter 6, Section 6.5.3.3) 
over time. Confirmatory factor analysis quantifies the three mechanisms 
of response shift:Â€ reconceptualization, reprioritization and recalibration. 
Reconceptualization means that some domains disappear, or that new 
domains appear. In factor analysis, this implies a change in the number 
of factors found. Reprioritization means a change in the importance of 
various domains. This is expressed in different factor loadings in the two 
data sets, i.e. the importance of the items has changed. Scale recalibra-
tion might also take place. This aspect of response shift can be detected 
with factor analysis, by testing whether the mean values of the variables 
change, i.e. testing the equivalence of the intercepts. In addition to indicat-
ing which element of response shift has occurred, confirmatory factor ana-
lysis is able to distinguish the response shift from true changes. However, 
the performance and interpretation of such a confirmatory factor analysis 
is quite complex, and therefore beyond the scope of this book. We refer 
to Oort, for details about the theory (Oort, 2005) and application (Oort 
etÂ€al., 2005).
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Which method do we prefer?
The quantitative and qualitative methods complement each other. The quali-
tative methods and individualized measures provide insight into the mecha-
nisms of response shift, but only the ‘then-test’ and factor analysis provide 
insight into the magnitude of the effect. The ‘then-test’ gives an overall esti-
mate of the effect, while factor analysis is able to specify which parts are 
due to reconceptualization, reprioritization and recalibration. Furthermore, 
factor analysis is able to distinguish between response shift and true changes 
in the construct. Therefore, factor analysis is preferable for quantitative ana-
lysis. To obtain more knowledge about which mechanisms are involved in 
response shift, a qualitative analysis is indispensable. Therefore, we recom-
mend using a combination of qualitative and quantitative methods.

8.5.6.3â•‡ Interpretation of response shift
A point of debate concerning response shift is whether or not one should 
adjust for response shift. Some researchers tend to do this, because they 
regard response shift as bias. In our opinion, adjustment for response shift 
is not always necessary. For example, suppose we are studying patients with 
cancer. People in the environment clearly observe that the patients’ health 
status is deteriorating. However, patients themselves do not report any 
deterioration in perceived general health status, as scored for instance with 
the SF-36. Should the patient’s answers be doubted? We have to keep the 
construct under study in mind:Â€health status as observed by other people 
is a construct that differs from the patient’s own perceived health status, in 
which coping and adaptation may play a role. If perceived health status is 
what we want to assess, then adjustment is not necessary in our opinion.

In some cases, achieving response shift may be the actual aim of the treat-
ment. For example, in rehabilitation medicine, some patients can not recover, 
in the sense that their physical condition can not be improved. However, much 
improvement in perceived health status can be gained by learning alternative 
ways of movement, by resetting goals or by learning to accept limitations and 
focusing on the remaining possibilities. Thus, inducing response shift is the 
aim of many interventions in the field of rehabilitation medicine.

To a certain extent, response shift can be avoided by careful formula-
tion of questions, which can be made more specific and leave less room for 
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variation in interpretation by the patients. For instance, instead of asking 
about long walks, one can specify a 10-km walk. Furthermore, specifying 
the point of reference deters patients from choosing their own point of ref-
erence, as patients can do in different ways (Fayers et al., 2007).

The concept of response shift and its mechanisms in health assessment is 
relatively new. Therefore, issues such as meaning, assessment and interpret-
ation of response shift are still under discussion.

8.6â•‡ Summary

The interpretability of a score is the degree to which one can assign qualita-
tive meaning to an instrument’s scores or change in scores. Interpretability is 
not considered to be a measurement property, but it is an important require-
ment for the intelligent use of a measurement instrument.

A study on interpretability starts with examining the distribution of the 
scores in the target population. Knowing the variation of scores in the popu-
lation helps us to interpret some measurement properties, such as reliability 
and responsiveness. Furthermore, the distribution may reveal clustering of 
scores, which often occurs at the extremes of the scale and indicates a lack 
of discriminative ability of patients at that range of the scale. Whether or not 
this clustering causes floor or ceiling effects depends on the purpose of the 
measurement. Floor and ceiling effects occur when we want to distinguish 
these clustered patients’ scores from each other, and when we want to detect 
change in the direction in which there is no further room for improvement 
or deterioration. In this latter case, the responsiveness of the instrument will 
be affected. Floor and ceiling effects often occur when the measurement 
instrument is applied to another target population than that for which it was 
originally developed.

IRT analysis is more powerful than CTT analysis if we wish to examine 
the distribution of scores on a scale, because with IRT the location of items 
as well as patients can be presented on the same scale. This reveals vari-
ous important interpretation issues:Â€ it shows whether there is a clustering 
of patients’ scores, whether there is a clustering of items and whether there 
is sufficient overlap between the locations of the items and the patients. 
Furthermore, with IRT analysis an inherent interpretation of a patient’s 
score is possible, because it indicates which items the patient probably can 
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and cannot do. In CTT analysis, other measurement instruments are needed 
to facilitate the interpretation of the scores.

It is informative to know the scores of relevant subgroups of patients, for 
example, the scores of patients who visit their general practitioner versus 
the scores of hospitalized patients. When using these measurement instru-
ments, we become more familiar with scores in various groups of patients, 
and can more easily learn the meaning of the scores. For the interpretation 
of change scores, we can follow the same strategy of comparison of instru-
ments and subgroups with clinical or commonly understood connotations. 
We stressed the importance of distinguishing between the interpretation of 
changes within patients and the difference between patients.

With regard to the change scores of measurement instruments, there are a 
few benchmarks of special interest:Â€the SDC and MIC. We defined the SDC 
as the smallest change that can be detected by the instrument, beyond meas-
urement error, and the MIC was defined as the smallest change in score in 
the construct to be measured that patients perceive as important.

We discussed a number of methods that can be used to assess MIC values, 
and explained the visual anchor-based MIC distribution method in detail. 
This method requires us to choose about an adequate anchor and to define 
minimal importance on that anchor. Furthermore, it provides extra infor-
mation about the consequences of the chosen MIC value. Appreciating and 
acknowledging the distinction between MIC and SDC enhances the inter-
pretation of the change scores on a measurement instrument.

Response shift is another interpretability issue. It can occur when patient-
reported measurement instruments are administered over time. Response 
shift is defined as a change in the meaning of self-evaluation of a target con-
struct as a result of a change in the respondent’s internal standards, values 
and conceptualization of the construct. Response shift is often the result of 
adaptation to a change in health status.

We presented a number of methods that can be used to assess response 
shift and discussed their interpretation. Suggestions on how to avoid 
response shift were also made. At first sight, response shift seems to cause 
bias. However, adjustment is not always necessary. When carefully consider-
ing the construct to be measured and appreciating the way in which patients 
perceive their health status, it can be concluded that the patient’s response is 
exactly the answer that was asked for.
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A proper interpretability of a score is a prerequisite for well-considered 
use of an instrument in clinical practice and research.

Assignments

1.â•‡ Distributions
The Multidimensional Fatigue Inventory (MFI-20), aims to assess fatigue in 
patients, and consists of five domains:Â€general fatigue, physical fatigue, mental 
fatigue, reduced motivation and reduced activity (we discussed the MFI-20 in 
Section 3.2.1). Each domain contains four items scored on a five-point Likert 
scale, resulting in a range for the total score of 4–20, with 20 indicating the 
highest degree of fatigue. Lin et al. (2009) validated the MFI-20 for use in a 
US adult population sample. They included three study samples:Â€292 patients 
with chronic fatigue syndrome (CFS) satisfying at least four CFS symptoms 
(CFS-like), 269 chronically unwell patients and 222 well persons.

Table 8.5 presents some data about the distribution of three of the five 
MFI domains in these three study samples.

(a)	 What kind of information does this table provide about the interpret-
ability of the MFI-20?

(b)	 Is the information on the distribution of the domains informative?
(c)	 Did floor or ceiling effects occur?

2.â•‡� Determining the minimal important change for the PRAFAB questionnaire, 
using the anchor-based minimal important change distribution method

In Section 8.5.4.3, when determining the MIC for the PRAFAB question-
naire we considered the patients who scored moderately improved, much 
improved and completely recovered as ‘importantly improved’.

What is the MIC value if the patients who scored slightly improved on 
the anchor are included in the group of ‘importantly improved’ patients 
(i.e. when the cut-off point on the anchor for importantly improved is laid 
between the categories ‘no change’ and ‘slightly improved’)? The deterio-
rated group is omitted from this analysis. The data set ‘PRAFAB.sav’ can be 
found on the website www.clinimetrics.nl.

(a)	 Determine the mean change values in the nine categories of the GRS.
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(b)	 Determine the distribution of the change scores (T0Â€– T2) in the ‘import-
antly improved’ group, and the distribution of the change scores (T0Â€– 
T2) in the ‘non-changed’ group (present absolute numbers and relative 
frequencies).

Table 8.5â•‡ Descriptive statistics for three of the five MFI-20 subscales for the three 
study samples

All CFS-like
Chronically 
unwell Well

General fatigue
Mean 12.90 16.38 12.84 8.42
SD 4.68 2.73 3.93 3.59
25% 9.00 15.00 10.00 6.00
Median 14.00 17.00 13.00 8.00
75% 17.00 I8.00 16.00 11.00
Range 4–20 6–20 4–10 4–20
% at floor 3.45 0 1.49 10.31
% at ceiling 6.13 13.01 3.36 0.45

Physical fatigue
Mean 10.85 13.63 10.39 7.77
SD 4.36 3.79 3.76 3.36
25% 7.00 11.00 8.00 5.00
Median 11.00 14.00 10.00 7.00
75% 14.00 16.00 13.00 10.00
Range 4–20 4–20 4–20 4–19
% at floor 6.39 0.34 5.60 15.25
% at ceiling 2.81 6.51 1.12 1

Reduced activity
Mean 9.25 11.32 9.06 6.76
SD 4.16 4.37 3.75 2.67
25 % 6.00 8.00 6.00 5.00
Median 8.00 11.00 8.00 6.00
75% 12.00 15.00 12.00 8.00
Range 4–20 4–20 4–20 4–16
% at floor 11.49 3.77 8.96 24.66
% at ceiling 2.43 5.14 1.49 0

Lin et al. (2009), with permission.
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(c)	 Determine the optimal ROC cut-off point.
(d)	 Draw a graph in Excel or another program to get a graph of the anchor-

based MIC distribution.

3.â•‡ Response shift
Dempster et al. (2010) reported on a study that assessed HRQL among 
people attending cardiac rehabilitation. In total, 57 patients completed the 
assessments before (pre-test) and after (post-test) a 10-week rehabilitation 
program that consisted of a supervised physical exercise program and pres-
entations on health education such as a healthy diet and stress management. 
Because the authors were interested whether response shift occurred in 
these assessments they included the SEIQOL-DW in their study and also 
used a then-test approach.

SEIQOL-DW is a quality of life measurement instrument, in which the 
individual patient determines the importance of the various domains. For 
this purpose, the total HRQL is represented by a circle. The patient men-
tions the five areas of life (e.g. health, family, work or social life) that are 
most important to him/her. For the direct weighting, the patient, with help 
from the researcher, divides the circle into five pie-segments according to 
the relative importance of these five areas of life, with percentages (%) that 
add up to 100%. Then the patient rates the quality of these five areas on a 
vertical 0–100 VAS. The ultimate SEIQOL-DW score is calculated as the 
sum of the score for each of the five areas, multiplied by the percentage of 
relative importance of that area (i.e. ∑relative weight × VAS score).

The information from the SEIQOL-DW and the then-test was obtained 
by interviews. The maximum score of the SEIQOL-DW is 100 indicating 
optimal HRQL, and lower values indicate less HRQL.

The authors analysed whether the life areas mentioned by the participants 
differed between pre-test and post-test, indicating a change over time. They 
presented all this in Table 8.6 as an illustration.

(a)	� About which mechanism of response shift does this table provide 
information?

(b)	 Please comment on how the data are presented.

The authors calculated an intraclass correlation coefficient (ICC) to evaluate 
whether the relative importance of the life areas was similar at the pre-test 
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and post-test. The authors do not clearly describe how they dealt with the 
fact that persons might have changed one or more of their five life areas. It 
appears that they worked with ‘areas of life’ numbered 1–5, irrespective of 
whether these areas were the same in the pre-test and post-test assessment. 
The ICC value was 0.74.

(c)	� About which mechanism of response shift does the ICC value provide 
information?

(d)	� Which data would you have liked to be presented instead of the ICC 
value.

The instruction for the then-test was as follows:Â€ ‘I would like you to look 
again at these five important life areas. This time I would like you to show 
me how you now think you were doing in each of these five areas when we 
first met. I am not asking you to try and remember how these important life 
areas were functioning, but rather how, when looking back today, you think 
they were functioning when we first met ….’ . The authors then compared 
the then-test score with the pre-test score.

(e)	 Considering this instruction, about which mechanism of response shift 
does the difference between the pre-test and then-test scores provide 
information?

The actual values for the SEIQOL-DW (∑relative weight × VAS score) for the 
five important areas for HRQL were not presented in the paper by Dempster 
et al. (2010). They presented only the differences between the pre-test and 

Table 8.6â•‡ Life areas (or cues) nominated by participants (n = 57)

Areas of life Pre-test frequency % Post-test frequency %

Family 52 91.2 48 84.2
Hobby 30 52.6 22 38.6
Social life 29 50.9 26 45.6
Work 27 47.4 20 35.1
Health 26 45.6 39 68.4
Home 18 31.6 15 26.3
Relationship 17 29.8 13 22.8

Adapted from Dempster et al. (2010) with permission.
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post-test scores and the differences with the then-test. It appeared that the 
then-test score was lower than the pre-test score:Â€ difference:Â€–9.56 (SD = 
18.07; P < 0.001). The post-test score was slightly higher than the pre-test 
score:Â€difference +5.09 (SD = 17.08; P = 0.028), indicating an improvement 
in HRQL.

(f)	� How large is the effect of the rehabilitation programme with and with-
out taking response shift into account? (It might be helpful to assume a 
certain value for the pre-test score, e.g. 64.)

(g)	� Which mechanisms of response shift are included in the difference 
between the post-test and the pre-test? (Note that this question differs 
from Assignment 3(e)

(h)	 Would you label the response shift as bias in this study?
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9

Systematic reviews of measurement 
properties

9.1â•‡ Introduction

Systematic reviews are made for many different types of studies, such 
as randomized clinical trials (RCTs), observational studies and diagno­
stic studies. Researchers, doctors and policy-makers use the results and 
conclusions of systematic reviews for research purposes, development of 
guidelines, and evidence-based patient care and policy-making. It saves 
them a considerable amount of time in searching for literature, and read­
ing and interpreting the relevant articles. For the same purposes, more 
and more systematic reviews of studies focusing on the measurement 
properties of measurement instruments are being published. The aim of 
such reviews is to find all the existing evidence of the properties of one or 
more measurement instruments, to evaluate the strength of this evidence, 
and come to a conclusion about the best instrument available for a par­
ticular purpose. They may also result in a recommendation for additional 
research.

In this chapter, we will describe the global structure of a systematic 
review of measurement properties. In such a review the content of meas­
urement instruments is described, the methodological quality of the stud­
ies focusing on the measurement properties is critically appraised, and 
results concerning the quality and appropriateness of the instruments for 
a specific purpose are summarized. The method of conducting a system­
atic review consists of the 10 steps described in Table 9.1. We will dis­
cuss each step separately in the following sections of this chapter. It should 
be noted, however, that some aspects of the methodology are still under 
development.
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9.2â•‡ Research question

9.2.1â•‡ Types of systematic reviews
Systematic reviews of measurement properties may be based on different 
research questions, i.e. to find and evaluate:

1.	 all available studies on the measurement properties of one measure-
ment instrument. For example, a systematic review of the measurement 
properties of the Western Ontario and McMaster Universities Index of 
Osteoarthritis (WOMAC) (McConnell et al., 2001).

2.	 all available studies on the measurement properties of a selection of the 
most commonly used measurement instruments that aim to measure a par­
ticular construct in a particular population. For example, a systematic 
review of the measurement properties of the five most commonly used 
tests to measure walking ability in patients with cardiorespiratory disor­
ders (Solway et al., 2001).

3.	 all available studies on the measurement properties of all available meas-
urement instruments that aim to measure a particular construct in a 
particular population. For example, a systematic review of all currently 
available quality-of-life measurement instruments suitable for use in pal­
liative care (Albers et al., 2010).

4.	 all available studies on the measurement properties of all available meas-
urement instruments (without specifying the construct to be measured) in 
a particular patient population. For example, a systematic review of out­
come measures for psoriasis (Ashcroft et al., 1999).

Table 9.1â•‡ Ten steps to conduct a systematic review of measurement properties

â•‡ (1)â•‡ formulate a research question
â•‡ (2)â•‡ perform a literature search
â•‡ (3)â•‡ formulate eligibility criteria
â•‡ (4)â•‡ select articles
â•‡ (5)â•‡ evaluate the methodological quality of the included studies
â•‡ (6)â•‡ extract the data
â•‡ (7)â•‡ compare the content
â•‡ (8)â•‡ data synthesisÂ€– evaluate the evidence for adequate measurement properties
â•‡ (9)â•‡ draw an overall conclusion of the systematic review
(10)â•‡ report on the systematic review

 

 

 

 

 



9.2â•‡ Research question277

Some systematic reviews aim to make an inventory of measurement instru­
ments (e.g. of all available measurement instruments for a particular con­
struct or of all those used in RCTs). Such reviews primarily focus on the use 
of the measurement instruments and not on their quality. Therefore, they 
are not considered to be systematic reviews of measurement properties.

9.2.2â•‡ Key elements of the research question
Four key elements should be included in the research question:Â€ (1) the 
construct of interest or the name(s) of the measurement instrument(s) of 
interest; (2) the population of interest (3) the type of measurement instru­
ment of interest (e.g. imaging techniques, laboratory tests, observation 
scales, performance-based instruments, interviews or questionnaires, 
etc.); and (4) the measurement properties on which the review focuses. 
An example of a research question is:Â€‘What are the measurement proper­
ties of pain observation scales used in or developed for older adults with 
severe Â�cognitive impairments, communication difficulties or both’ (Van 
Herk et al., 2007).

Whether to restrict the systematic review to one or to several measure­
ment instruments depends on the purpose of the review and the amount of 
information available. If there is a lot of available evidence concerning many 
instruments, it may become too extensive and complex to conduct a review 
including all measurement instruments. Therefore, one might choose to 
conduct a review of the two or three instruments most commonly used to 
measure the construct of interest. If the interest lies in the quality of one 
particular instrument, or the quality of a particular version (e.g. only the 
self-administered version of a questionnaire or the Dutch version of a ques­
tionnaire), it might be more appropriate to conduct a systematic review of 
the measurement properties of the (version of the) instrument of interest. If 
it is the intention to decide on the best available measurement instrument, 
no instruments should be excluded, and all measurement properties should 
be included.

9.2.3â•‡ Systematic reviews to select the best measurement instrument
Most systematic reviews focus on all measurement properties of the 
included instruments. However, there are also reviews that focus on only 
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one measurement property (e.g. a review of the reliability of functional MRI) 
(Bennett and Miller, 2010), or a review of the construct validity of instru­
ments measuring impairments in body structures and function in patients 
with rheumatic disorders (Swinkels et al., 2006). These reviews are not suit­
able for selecting the best instrument, because not all of the measurement 
properties are evaluated.

This chapter focuses on systematic reviews of measurement properties 
that aim to select the best measurement instrument available for a particular 
purpose. In order to make a well-considered choice, in such a review it is 
important to evaluate the measurement properties of all, or at least the most 
important, measurement instruments. Unlike systematic reviews of RCTs or 
diagnostic studies, which usually focus on one outcome (effect size or diag­
nostic accuracy), a systematic review of measurement properties focuses 
on many outcomes, i.e. the various measurement properties. The evidence 
for the various measurement properties may be provided by different sets 
of studies. This means, that, in fact, a systematic review of measurement 
properties consists of several systematic reviews, i.e. one for each measure­
ment property. Therefore, conducting such a review can be quite complex 
and time-consuming, but they are well worth the effortÂ€– for the individual 
researcher and for the research community as a whole. To find out whether 
a systematic review on measurement properties of instruments measuring a 
specific construct in a specific population exists, a list of published system­
atic reviews is available at www.cosmin.nl.

9.3â•‡ Literature search

An adequate literature search is of utmost importance for a systematic review 
in order to find all the available evidence. A suboptimal search might miss 
important articles, and could even lead to wrong conclusions. A good litera­
ture search for systematic reviews of measurement properties is challenging, 
because studies on measurement properties are difficult to find. This is due 
to:Â€(1) a large variation in the terminology used for measurement properties; 
(2) a sometimes incomplete and often unpredictable indexing of the pri­
mary studies; and (3) poorly reported abstracts of studies on measurement 
properties.
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9.3.1â•‡ Databases
As is the case in reviews of other types of research, not all relevant articles 
will be found in one database. It is therefore recommended to search more 
databases. We recommend using at least MEDLINE (e.g. using the PubMed 
interface) and EMBASE (Exerpta Medica Database). In addition, data­
bases focusing on specific professional organisations can be searched (e.g. 
CINAHL, Cumulative Index to Nursing and Allied Health Literature), which 
is a resource for nursing and allied health literature, or subject-specific data­
bases, such as PsycINFO or SportDiscus, which are resources for psycho­
logical literature, and sports and sports medicine journals, respectively.

9.3.2â•‡ Build a search strategy
A search strategy should contain searches for several characteristics of the 
studies of interest. These correspond to a certain extent with the key elem­
ents of the research question (see Section 9.2.2) and consist of a collection of 
search terms for the following characteristics:Â€(1) construct of interest; (2) tar­
get population; and (3) measurement properties. For each of these character­
istics a comprehensive list of possible synonyms should be made, consisting of 
index terms (such as ‘MeSH terms’ (Medical Subject Headings) in MEDLINE 
and EMTREE terms in EMBASE) and free text words (i.e. words in the title 
or abstract). These synonyms for each characteristic should be combined with 
the conjunction ‘OR’. The searches for these three characteristics should then 
be combined with the conjunction ‘AND’, to obtain the list of references that 
should be used to select the relevant articles. Selecting adequate search terms 
and building the search strategy should be carried out by an expert on the spe­
cific construct in close co-operation with a medical information specialist.

1:â•‡ Construct of interest
Examples of search terms for the construct ‘activities of daily living’ in 
MEDLINE are:Â€‘activities of daily living’ as MeSH term, complemented by 
the following search terms as free text words:Â€instrumental activities of daily 
living, instrumental ADL, IADL, extended ADL, complex ADL, advanced 
ADL, functional ability, everyday functioning and activities of daily living 
(Sikkes etÂ€ al., 2009). If the aim of the review is to evaluate the quality of 
one specific measurement instrument, or a selection of commonly used 
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Â�instruments, terms for the construct can be replaced by the name(s) of these 
measurement instrument(s).

2:â•‡ Target population
The search terms for the target population can be similar to the terms used 
in a review on RCTs. For example, for a review of patients with neck pain 
the search terms for the target population could be:Â€neck[MeSH] OR ‘neck 
pain’[MeSH] OR ‘neck injuries’[MeSH] OR ‘whiplash injuries’[MeSH]. The 
target population does not necessarily have to be a patient population. For 
example, a specific age group of the general population may be of interest 
(e.g. children). The search terms for this target population could, for example, 
include:Â€child*[tw] OR schoolchild*[tw] OR infan*[tw] OR adolescen*[tw] 
OR pediatr*[tw] OR paediatr*[tw] OR neonat*[tw] OR boy[tw] OR boys[tw] 
OR boyhood[tw] OR girl[tw] OR girls[tw] OR girlhood[tw] OR youth[tw], 
etc. The indication [tw] in MEDLINE recognizes the specific term in the 
title, abstract and MeSH index. A specific setting can also be chosen to define 
the target population. For example, in a review of measurement instruments 
suitable for use in the palliative care setting (Albers et al., 2010), the fol­
lowing search terms were used:Â€palliative OR terminal OR ‘end of life’ OR 
‘limited life’ OR ‘hospice care’ OR ‘after-hours care’.

3:â•‡ Measurement properties
To identify all studies that focus only on measurement properties, a highly 
sensitive (sensitivity 97.4%) methodological search filter has been devel­
oped for use in MEDLINE through PubMed (available via Terwee et al., 
2009). This search filter reduces the number of records that need to be read 
to identify one study on measurement properties from 87 (without the filter) 
to 23 (with the filter).

You may notice that type of measurement instrument, which was one of the 
four key elements of the research question, is not used as a basis for search 
terms. Possible terms for the type of measurement can be questionnaire, 
interview, performance test, laboratory test or scan, but no search terms for 
the type of instrument are included because this could result in a high risk 
of missing relevant articles. Many studies on measurement instruments do 
not use these specific terms, but use terms such as ‘measure’, ‘method’ or 
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‘instrument’ instead. These are such broad terms that they can not be used 
as search terms, because they would result in too many irrelevant articles. 
Therefore, we advise against the use of search terms indicating the type of 
measurement instrument.

In addition to the search strategy described above, we recommend that 
an additional search be performed, including the names of the instruments 
found in the initial search. These names can be combined, using the AND 
conjunction, with terms for the target population and the measurement 
properties.

We discourage the use of time limits or language restrictions in the search, 
because the aim is to find all relevant evidence for the quality of the included 
measurement instruments. Studies conducted many years before can still 
provide this evidence, and there is no reason to exclude these studies. An 
exception could be if one is interested in imaging techniques, and some of 
the older techniques may have become obsolete. Language restrictions are 
not recommended, but for practical reasons, the review is often restricted to 
articles written in languages in which the researchers are fluent. Note that 
a distinction should be made between the language in which the article is 
written and the language of the measurement instrument under study (if the 
instrument is based on written items, or an instruction text is included).

9.3.3â•‡ Reference checking
We recommend that the reference list of the articles identified with the elec­
tronic literature search should be checked to search for additional relevant 
studies. If many new studies are found through this method, this is an indi­
cation that the initial literature search was not adequate, and that even more 
studies might have been missed. We would then recommend that the search 
strategy should be improved and the initial search repeated.

9.3.4â•‡ Publication bias
Publication bias occurs when studies in which the quality of the measure­
ment instrument under study was found to be poor are not published. There 
is no registration of studies of measurement properties, as there is for RCTs. 
Therefore, it is not yet possible to determine the impact of publication bias 
on the results of a systematic review of measurement properties.
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9.4â•‡ Eligibility criteria

The search strategy will typically yield many records, because the aim of the 
search is to identify all articles that are possibly relevant, and broad search 
terms are used. The next step is now to define strict inclusion and exclusion 
criteria that will be used to select relevant articles. We recommend that at 
least the following inclusion criteria should be applied (again using the four 
key elements in the research question):

(1)	 instruments should aim to measure the construct of interest
(2)	 the study sample should be selected from the target population of 

interest
(3)	 the study should concern the type of measurement instrument of 

interest
(4)	 the aim of the study should be to develop a measurement instrument or 

evaluate one or more of the properties of an instrument.

A number of remarks can be made with regard to these inclusion criteria. 
As in the literature search, if the aim of the review is to evaluate the quality 
of one specific measurement instrument, or a selection of commonly used 
instruments, the first inclusion criteria can be replaced by the name(s) of 
these instrument(s).

If one is only interested in, for example, the German version of an instru­
ment, this should be clearly stated in the research question and, conse­
quently, an additional inclusion criterion can be formulated. In order to find 
all relevant information about the measurement properties of an instru­
ment, articles on the development of that instrument must be included. This 
is because the articles often contain relevant information about the con­
struct that is measured with the instrument, a description of the content 
(necessary in step 7 ‘comparing the content’), and other information that 
is needed to evaluate the content validity of the instrument. Therefore, we 
should not restrict the review to studies focusing on measurement property 
evaluation.

It is often possible to obtain a considerable amount of indirect evidence 
on the measurement properties of an instrument (e.g. from studies in which 
the instrument of interest is used in the validation process of another instru­
ment, or in an RCT or other longitudinal study in which indirect evidence 
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for responsiveness might be found). However, we recommend excluding 
such studies from the review for two reasons. First of all, it is very difficult to 
find all of these articles in a manageable and structured way, and secondly, it 
is often difficult to interpret the evidence for validity or responsiveness pro­
vided in these studies, because no hypotheses about these properties have 
been formulated or tested in them.

9.5â•‡ Selection of articles

An initial selection is made by applying eligibility criteria to all titles and 
abstracts found in the search. It is recommended that at least two research­
ers screen all titles and abstracts. They should independently assess the eli­
gibility of the studies and discuss their assessments. When in doubt about 
the eligibility of a study, we recommend that the full text article is retrieved, 
and together with the full text articles likely to meet the inclusion criteria, be 
screened for eligibility. This should again be done by two researchers inde­
pendently, who afterwards discuss their assessments and achieve consensus 
about inclusion or exclusion, if necessary because of disagreement, with the 
help of a third researcher.

The search should be carefully documented. The names of the databases 
that were searched, as well as the interface used to search the databases, such 
as PubMed or OVID for searching MEDLINE, should be documented. It is 
also important to document the date of the search, the exact search terms 
and any limitations (e.g. language or age restrictions) that were applied. 
Moreover, it is often necessary to update the search before submitting or 
publishing the review. The same search strategy should then be used again. 
It is valuable for readers to know which search terms were used in order to 
assess the comprehensiveness of the search strategy. Therefore, we recom­
mend that the search strategy is made available for readers in an appen­
dix or on a website. The date of the searches in each database should be 
described in the methods section of the article. Software such as Reference 
Manager or Endnote is very useful to manage references found in each 
database.

Next, we recommend careful documentation of records that were ini­
tially selected (i.e. based on title and abstract), the full text articles that were 
retrieved and articles included in the review. It is also useful to document 
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reasons for the exclusion of retrieved full text articles, particularly in the case 
of doubtful articles, because journals sometimes require this information. 
Moreover, if the same article is found again, for example when updating the 
review, or if the search is performed in another database, it saves time if you 
have noted why a specific article was already excluded. We recommend that 
all information about the search and selection process is presented in a flow 
chart. Figure 9.1 presents an example of such a flow chart of a systematic 
review in which the aim was to find all studies reporting on measurement 
properties of quality of life instruments suitable for use in palliative care 
(Albers et al., 2010).

9.6â•‡ Evaluation of the methodological quality of the included studies

It is important to evaluate the methodological quality of studies in which 
measurement properties are assessed. If a study meets the standards for 
good methodological quality, the risk of bias is minimal. ‘Risk of bias’ instru­
ments have been developed for RCTs (e.g. the Delphi list) (Verhagen et al., 
2001) and for diagnostic studies (e.g. the QUADAS list) (Whiting et al., 
2003). In an international Delphi study, we developed the COSMIN check­
list, which can be used to evaluate the methodological quality of studies on 
measurement properties (Mokkink et al., 2010b). The checklist was specif­
ically developed for studies on health-related patient-reported outcomes, 
but it can also be used to assess the quality of studies on other kinds of 
measurement instruments. It can be used to assess whether a study meets 
the standard for good methodological quality with regard to the follow­
ing measurement properties:Â€internal consistency, reliability, measurement 
error, content validity, construct validity (i.e. structural validity, hypotheses 
testing and cross-cultural validity), criterion validity and responsiveness. It 
contains standards for studies that apply classical test theory (CTT), as well 
as for studies that apply item response theory (IRT). It includes a specific 
box that contains general requirements for articles in which IRT methods 
are applied (IRT box). In addition, the checklist contains standards for stud­
ies on interpretability, which was not considered a measurement property, 
though an important characteristic of a measurement instrument (see also 
Chapter 8). The standards apply to aspects of the study design and statistical 
methods. Another box contains general requirements for the generalizability 
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of results (Generalizability box). In Section 9.7 we discuss the generalizabil­
ity of results. The COSMIN checklist and manual can be found at www.
cosmin.nl.

To assess the quality of a study on measurement properties using the 
COSMIN checklist, a four-step procedure should be followed, as described 
in Table 9.2.

Included for further investigation
65 references 

Excluded/irrelevant
based on abstracts
1950 references 

After checking for duplicates
2015 references

PubMed
1227

references

Embase
759

references

PsycINFO
110

references

Additional 4 references
from manual searches
of the reference lists
and review articles 

Total number of studies = 36
Total number of instruments = 29 

CINAHL
516

references

Excluded/irrelevant
based on full texts

33 references

+

Figure 9.1	 Flow chart of the search and selection process of a systematic review of the meas-
urement properties of quality of life instruments for palliative care. Albers et al. 
(2010), with permission.
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•	 Step 1:Â€ First, you should determine which measurement properties are 
evaluated in the article, and consequently, which COSMIN boxes you 
need to complete. Although this may seem quite straightforward, it can 
be complex, particularly if the terminology used in the article differs from 
that used in the COSMIN taxonomy. As a reviewer, you should decide 
which measurement properties are assessed, regardless of the terminology 
used in the included studies. Examples can be found at the COSMIN web­
site (www.cosmin.nl).

•	 Step 2:Â€If IRT methods are used in a study, the requirements in the IRT 
box should be checked to evaluate whether the study meets the specified 
requirements.

•	 Step 3:Â€You should now complete the corresponding COSMIN boxes for 
each measurement property that was identified in step 1.

•	 Step 4:Â€Finally, the characteristics of the study population are extracted 
to determine the generalizability of the study findings. This should be 
done for each measurement property identified in step 1. When using the 
COSMIN checklist in a systematic review, instead of stating whether a 
characteristic has been reported, the actual values of the characteristics 
should be extracted. This information is necessary to evaluate the gener­
alizability of the results and to assess (dis)similarities of the studies in the 
process of data synthesis (see Section 9.7.2).

A detailed description of how to use the checklist, a rationale for each 
item, and suggestions for scoring the items, are provided in the COSMIN 
manual (www.cosmin.nl).

Example:Â€Mazaheri et al. (2010)
The Foot and Ankle Ability Measure (FAAM) is a 29-item questionnaire 
to assess functional limitations in patients with varying leg, foot and ankle 

Table 9.2â•‡ Four-step procedure for using the COSMIN checklist

Step 1:Â€determine which measurement properties are evaluated in the article
Step 2:Â€if the statistical methods described in the article are based on item response theory (IRT), 
determine whether the study meets the specified requirements for IRT
Step 3:Â€evaluate the methodological quality of the study with regard to the properties identified in step 1
Step 4:Â€assess the generalizability of the results with regard to the properties identified in step 1
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disorders. It is divided into two subscales:Â€activities of daily living (ADL, 21 
items) and sports (eight items). We will show how the COSMIN checklist 
can be used to evaluate the methodological quality of this study.

The first step is to determine which measurement properties are evalu­
ated. In this article, internal consistency, reliability, measurement error and 
construct validity (i.e. hypotheses testing) were evaluated. No IRT methods 
were used, so the IRT box (step 2) does not need to be completed. The third 
step is to complete the COSMIN boxes for each measurement property eval­
uated in the article. For this article, four boxes (internal consistency, reli­
ability, measurement error and hypotheses testing) need to be completed. 
In this example, we only focus on the assessment of reliability (the results of 
the other measurement properties are not shown here). In Figure 9.2 rele­
vant parts of the article can be found. We will demonstrate how we would 

Introduction  

… Although the FAAM has been shown to have a good evidence of psychometric properties, its additional 

validation in other cultures is needed in order to compare and contrast assessments made in different 

countries. Therefore, the purpose of the study was to cross-culturally adapt and validate the Persian version 

of FAAM in a group of patients with foot and ankle disorders.

 

Methods

Participants and design  

During a 1-year period, a consecutive sample of native Persian speaking outpatients with a range of foot 

and ankle disorders referred to 1 Orthopaedic and 4 Physical Therapy clinics in Tehran, and Isfahan, 

participated in the study. Patients were included in the study if the cause of their foot and ankle disorder 

was musculoskeletal in origin. Patients with a history of knee, hip or back pain during the last 3 months, 

systematic inflammatory rheumatic disease, neurological or vascular conditions, cancer, diabetes mellitus, 

alcohol abuse and psychiatric disorders were excluded from the study. Of 93 patients who were identified 

as eligible to participate in the study, all patients agreed to participate and completed the questionnaires. 

Most of the patients (78.5%) were diagnosed as having lateral ankle sprain. […]. All patients received a 

region specific questionnaire, FAAM, and a generic one, Short-Form 36 Health Survey (SF-36), in the first 

visit. The questionnaires were completed in the clinic waiting room. To evaluate test-retest reliability, a 

sample of 60 subjects completed the FAAM 2–6 days after the first visit in the same location. To ensure  

that the health status remained stable between repeated measurements, all patients were explicitly asked by 

telephone contact that “Has your status changed over the last days since you filled out this questionnaire?”. 

Three possible responses were: (1) no; (2) yes changed for the better and (3) yes changed for the worse. 

Sixty out of ninety-three patients responded “no” to the question.  

 

Figure 9.2	 Adapted from Mazaheri et al. (2010), with permission from Elsevier.

 



Reviews of measurement properties288

In the sample of 60 patients who participated in the test-retest analysis, ADL and SPORTS subscales had 

mean (SD) scores of 68.69 (23.79) and 38.15 (25.64) for the test session and mean (SD) scores of 68.83 

(23.04) and 38.70 (25.45) for the retest session, respectively. No significant difference between test and  

retest mean scores was obtained, indicating absence of any systematic change. The ICC (95% CI) for the 

ADL subscale was 0.98 (0.97-0.99). The ICC (95% CI) for the SPORTS subscale was 0.98 (0.97-0.99). 

…

Discussion

… Another limitation of this study may be the short length of time (i.e., 2-6 days) between two 

measurements for test-retest reliability which increases the memory effects of first administration of the 

instrument on the performance of subsequent administration. … 

… The results of the present study must be generalised cautiously, because the population represents a 

sample with young age, with a prevalence of males and with a dominant diagnosis of lateral ankle sprain. 
…

Table II
Descriptive statistics and number (%) of patients reporting the worst possible score
(floor effect) and the best possible score (ceiling effect) for the subscales of FAAM
(N = 93)

FAAM
subscales

ADL
SPORTS

Mean

69.19
41.67

21.97 4.74–100 0
7 (7.5)

2 (2.2)
00–93.7525.13

SD Range Floor effect Ceiling effect

n (% of patients)n (% of patients)

Instruments 

The FAAM is a 29-item questionnaire divided into two subscales: activities of daily living (ADL) with 21 

items and SPORTS with 8 items. Each item is scored on a 5-point Likert scale representing different levels 

of difficulty (no difficulty at all, slight difficulty, moderate difficulty, extreme difficulty, and unable to do). 

The ADL and SPORTS subscales have a total score of 84 and 32, respectively. The scores are transformed 

to percentages with higher scores indicating a higher level of functional status for each subscale. … 

 

Assessment of psychometric properties  

… test-retest reliability was assessed using two-way random effects model of intraclass correlation 

coefficient (ICC2,1). ICC ≥0.70 were considered satisfactory for test-retest reliability. … 

 

Results 

… Only 23 of 2697 (93 x 29) items (0.85%) were missing for the FAAM data. If the number of missing 

values were one or two for a subscale, they were substituted with the mean value. More than two missing 

values for a subscale were considered invalid.…

Figure 9.2â•‡ (cont.)
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Â�complete the COSMIN box for reliability, and explain our ratings. The fourth 
step will be discussed in Section 9.7.2.

First, we will show how the reliability box should be completed in this 
example (Table 9.3); secondly, we give our rationale for the answers; and 
thirdly, we explain how we come to a conclusion about the methodological 
quality of the study.

Table 9.3â•‡ Reliability box of the COSMIN checklist

Box B. Reliability

Design requirements Yes No ?

1 Was the percentage of missing items given? ☑ ☐
2 Was there a description of how missing items were 

handled?
☑ ☐

3 Was the sample size included in the analysis adequate? ☑ ☐ ☐
4 Were at least two measurements available? ☑ ☐
5 Were the administrations independent? ☑ ☐ ☐
6 Was the time interval stated? ☑ ☐
7 Were patients stable in the interim period on the 

construct to be measured?
☑ ☐ ☐

8 Was the time interval appropriate? ☐ ☑ ☐
9 Were the test conditions similar for both 

measurements (e.g. type of administration, 
environment, instructions)?

☑ ☐ ☐

10 Were there any other important flaws in the design or 
methods of the study?

☐ ☑

Statistical methods yes no NA ?

11 For continuous scores:Â€Was an 
intraclass correlation coefficient (ICC) 
calculated?

☑ ☐ ☐

12 For dichotomous/nominal/ordinal 
scores:Â€Was kappa calculated?

☐ ☐ ☑

13 For ordinal scores:Â€Was a weighted 
kappa calculated?

☐ ☐ ☑ ☐

14 For ordinal scores:Â€Was the weighting 
scheme described (e.g. linear, quadratic)?

☐ ☐ ☑

Mokkink et al. (2010b), with permission.
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The rationale for our answers is as follows:

(1)	 The percentage of missing items for the test data of the 93 patients who 
completed the baseline questionnaire was reported (i.e. 0.85%). There 
was no description of the percentage of missing items in the retest 
administration. We have ignored that in our rating.

(2)	 Depending on the number of missing items per patient in a subscale, 
the authors either substituted the missing value with the mean value, 
or they considered it invalid. Although they do not make it explicit, it is 
highly likely that they imputed the missing value with the mean value 
of other items from the patient’s subscale. If more than two items in a 
subscale were missing, they probably considered the subscale score as 
missing. However, as the percentage of missing data was very low, dif­
ferent ways of handling missing data (e.g. ignoring or imputing missing 
items) will not have had any major consequences for the results.

(3)	 A total of 60 patients were included in the reliability analysis. We consider 
a sample size of 60 patients appropriate for the analyses of reliability.

(4)	 For each patient, data on two administrations were available.
(5)	 It was not described whether the administrations were independent, 

although we assumed that they were, because it is very uncommon that 
patients receive their answers to the first administration when they com­
plete the second administration. However, due to the short time interval 
between the two administrations, the patients might have remembered 
their previous answers.

(6)	 The time interval was between 2 and 6 days.
(7)	 The patients were asked by telephone whether their status had changed 

during the days since they filled in the questionnaire. Patients who 
answered ‘no’ were included in the test–retest analysis. It should be 
noted that ‘status’ is somewhat vague; it would have been better if they 
were explicitly asked whether there was any change in their functional 
limitations due to their foot or ankle disorder.

(8)	 We consider a time interval of 2–6 days to be somewhat short, as the 
authors also acknowledge, because patients might have remembered 
their previous answers.

(9)	 Patients were asked to complete the same questionnaire again in ‘the 
same location’ (i.e. in the waiting room of the same clinic in which they 
had completed the first questionnaire).
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(10)		 The study seems to be carefully designed and analysed, with no major 
flaws.

(11)		� The subscale scores are considered continuous; therefore, ICCs were 
calculated. The authors even explicitly described which type of ICC 
they calculated (see Section 5.4.1):Â€a two-way random effects model of 
intraclass correlation coefficient (ICC 2.1) refers to ICCagreement (Shrout 
and Fleiss, 1979).

(12)		 Items 12–14 were not applicable for this study.

Now that we have completed each item of the reliability box, we need to come 
to an overall conclusion about the methodological quality of this reliability 
study. In general, when all items are satisfactorily answered, the methodo­
logical quality of a study is considered to be good. If one or more items have 
a negative score, the quality of the study is affected. In this case, we consid­
ered the time interval between test and retest to be inappropriate, and con­
clude that the methodological quality of the assessment of the measurement 
property reliability in this study is suboptimal. In Sections 9.9.2 and 9.9.3 we 
explain how the methodological quality is taken into account in the data syn­
thesis. A scoring system to obtain a total score (excellent, good, fair, poor) for 
the methodological quality of a study for each measurement property is still 
under development. Up-to-date information regarding the COSMIN scoring 
system can be found on our website www.cosmin.nl.

9.7â•‡ Data extraction

The next step in conducting a systematic review is to extract relevant infor­
mation from the included articles. The data should be preferably extracted 
by at least two independent researchers, using a data-extraction form specif­
ically developed or adapted for each review. This form should contain items 
concerning:Â€(1) the general characteristics of the instrument; (2) the char­
acteristics of the study sample; and (3) the results with regard to the meas­
urement properties.

9.7.1â•‡ General characteristics of the instrument
General characteristics of the instruments that need to be extracted are:Â€ a 
description of the construct to be measured and its conceptual framework 
(see Chapter 2), type of instrument (e.g. laboratory test, performance-based 
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test or self-report instrument), format and practicalities of the instrument (e.g. 
technical specifications of positron emission tomography scans, tasks to be 
performed in a performance-based test, number of questions and dimensions 
of a questionnaire or interview and its language version), information about 
feasibility, costs or time needed to administer, etc. Much of this information 
can usually be found in articles describing instrument development.

In Table 9.4, we suggest several characteristics of the format and other 
practicalities that could be extracted for a multi-item questionnaire.

If the instrument(s) under study concern(s) a performance-based test, it 
is useful to extract information such as the number of activities to be per­
formed, facilities required to perform an activity, description of the activ­
ities, and instructions for supervisors. For imaging techniques, information 
about technical requirements, procedures and types of tracers used are rele­
vant. The descriptive information can be used to compare the instruments 
with regard to content and practicalities. In Section 9.8, we will explain the 
content comparison in more detail.

9.7.2â•‡ Characteristics of the study population
Important characteristics of the study population are age, gender, disease 
characteristics, setting, country, patient selection methods and response 

Table 9.4â•‡ Characteristics of format and practicalities of a multi-item questionnaire

Format

â•‡ (1) the number of items and (sub)scales in the questionnaire
â•‡ (2) the number and type of response categories (i.e. nominal, ordinal, interval or ratio)
â•‡ (3) the recall period in the questions (e.g. 1 week, 4 weeks, 6 months)
â•‡ (4) the scoring algorithm (e.g. how total scores and subscores are calculated and how 

missing items are handled)
â•‡ (5) the average time needed for administration
â•‡ (6) the mode of administration (e.g. self-report, interview, diary)
â•‡ (7) the target population for whom the questionnaire was originally developed (e.g. 

age, gender, health status)
â•‡ (8) how a full copy of the questionnaire can be obtained
â•‡ (9) the instructions given to those who complete the questionnaire
(10) the available versions and translations of the questionnaire
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rate. The reason why this information should be extracted is to make it 
possible to determine the type of population to which the results of a study 
on measurement properties can be generalized and to assess the (dis)simi­
larities of study populations and settings in the process of data synthesis 
(Section 9.9). Note that item 7 in Table 9.4 referred to the target popula­
tion for which the measurement instrument was developed. Here we refer 
to the study population in which the measurement instrument properties 
were tested.

We use the Mazaheri et al. (2010) study introduced in Section 9.6 to illus­
trate how the generalizability box of the COSMIN checklist can be used to 
assess generalizability of the results in the reliability study. Table 9.5 presents 
the results, and below we comment on each item.

Table 9.5â•‡ Characteristics of the study population extracted using the 
generalizability box of the COSMIN checklist

Generalizability box

Data

Was the sample in which the instrument was evaluated 
adequately described? n = 60

1 Median or mean age (with standard deviation or  
range)?

Not reported

2 Distribution of gender? Not reported
3 Important disease characteristics (e.g. severity, status, 

duration) and description of treatment?
Not reported

4 Setting(s) in which the study was conducted (e.g.  
general population, primary care or hospital/
rehabilitation care)?

Clinics for 
orthopaedics and 
physiotherapy

5 Countries in which the study was conducted? Tehran and Isfahan, 
Iran

6 Language in which the instrument was evaluated? Persian
7 Was the method used to select patients adequately 

described (e.g. convenience, consecutive or random)?
Consecutive

8â•… Was the percentage of missing responses (response  
rate) acceptable?

Response 100%

Mokkink et al. (2010b), with permission.
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1–3. The demographic and clinical characteristics of all 93 patients were 
described in the Mazaheri et al. (2010) article. However, a sample of 60 
patients was used for the assessment of test–retest reliability. This sample 
differed from the total one in their responses to the question about change in 
status. It is unclear whether the demographic and clinical characteristics of 
the stable subgroup differed from the characteristics of the total sample. For 
example, the test–retest sample could have been younger, or had a higher 
level of education. This is unknown, and therefore, the COSMIN items 1–3 
are scored to be ‘not reported’.

4–6. The patients were recruited from one orthopaedic and four physical 
therapy clinics in Tehran and Isfahan, two big cities in Iran. They all received 
the Persian version of the questionnaires.

7. The patients were selected consecutively.

8. All patients agreed to participate in the study, thus the response rate was 
100%.

Overall, we can conclude that the generalizability is suboptimal.

Item 5, concerning the country in which the study was conducted, and item 
6, concerning the language version, is particularly important for studies on 
patient-reported outcomes (PROs).

9.7.3â•‡ Results of the measurement properties
To evaluate the quality of the measurement instrument itself, information 
on its measurement properties should be extracted, i.e. the results of the 
analyses of each of the measurement properties. For example, the values of 
Cronbach’s alpha, kappa values, limits of agreement, correlations between 
(change) scores, the results of the factor analysis or the area under the ROC 
curve. The accompanying confidence intervals and the sample size used in 
each analysis are also relevant, and should be extracted.

9.8â•‡ Content comparison

When choosing between different health measurement instruments, one of 
the methods that can help when deciding on the best available measure­
ment instrument for a particular purpose is a content comparison. Content 
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comparison is a useful tool to see the differences in content between several 
questionnaires or several performance-based tests. For example, Brearley 
etÂ€al. (2008) compared the content of eight self-report instruments to meas­
ure chemotherapy-induced nausea, vomiting and retching (CINVR). They 
examined, among other things, which aspects of CINVR were covered by 
the eight instruments. Table 9.6 shows which instruments include items 
concerning the different phases (anticipatory, acute and delayed), domains 
(nausea, vomiting and retching) and characteristics of the complaints 
(occurrence, frequency, duration, and intensity).

Table 9.6â•‡ Content of patient self-report instruments to measure chemotherapy-induced 
nausea and vomiting

Item MANE MANE-FU INVR FLIE
FLIE
5-day recall

CINE-
QLQ MAT NV5a

Nausea ● ● ● ● ● ● ● ●

Vomiting ● ● ● ● ● ● ● ●

Retching ● ● ●

Anticipatory ● ● b ● ●

Acute ● ● ● ● ● ● ● ●

Delayed b ● â•›â•›c ● ● ● ●

Occurrence ● ● ● ● ● ● ●

Frequency ● ● ● ● ● ●

Intensity ● ● ●

Duration ● ● ● ● ●

Interference 
with function

● ● ● ● ●

Anti-emetics ● ● ●

Adapted from Brearley et al. (2008), with permission.
aâ•›With additional tools.
bâ•›�Not specifically designed to capture, but could be usedÂ€– instrument would need to be 
administered on multiple occasions.

câ•›Initial delayed up to 3 days post-chemotherapy.
MANE, Morrow Assessment of Nausea and Emesis; MANE-FU, later version of MANE; INVR, 
Index of Nausea, Vomiting and Retching; FLIE, Functional Living Index-Emesis; CINE-QLQ, 
Chemotherapy-induced Nausea and Emesis Quality of Life Questionnaire; MAT, Multinational 
Association of Supportive Care in Cancer (MASCC) Assessment Tool; NV5, Osoba nausea and 
vomiting model (plus additional tools).

 

 

 

 

 

 



Reviews of measurement properties296

9.9â•‡ Data synthesis:Â€evaluation of the evidence for adequacy of the 
measurement properties

In this step we need to take all the evidence per measurement property of 
an instrument into consideration, which means that we will somehow have 
to combine results from different studies. The measurement properties of an 
instrument in one population or setting may be different to those in another 
population or setting. We have seen that reliability parameters depend on 
the heterogeneity of the sample, and that a measurement instrument should 
be validated for different target populations. Therefore, the results with 
regard to measurement properties can only be generalized to populations 
that are similar to the study sample in which the measurement properties 
have been evaluated. This implies that when a measurement property has 
been evaluated in different studies we need to consider the (dis)similarities 
in populations and settings in the various studies, and the (dis)similarities of 
the results, and decide which studies can reasonably be combined. Next, we 
decide on whether to perform a quantitative combination of the results or to 
draw a conclusion about the measurement property in a qualitative manner. 
In the end, we have to decide from the combined results of the various stud­
ies whether the measurement property is adequate. Criteria for adequacy 
will be presented in Section 9.9.4

9.9.1â•‡ Homogeneity of the study characteristics
Combining the results of different studies concerning a measurement prop­
erty is only possible if the studies are sufficiently similar with regard to 
study population and setting, the (language) version of the instrument that 
is used, and the form of administration. In Section 6.2, we stated that the 
FDA considered these to be new situations requiring new validation studies 
(FDA Guidance, 2009, pp. 20–1). To assess the similarities of different study 
populations, the data extracted with the generalizability box are indispens­
able. As in the case of systematic reviews of RCTs, no standard rules can be 
formulated about which factors should be taken into account and what is 
sufficiently similar, and it is up to the researcher to decide what is clinically 
sensible to combine. An example is presented in Assignment 9.2.

Next, data synthesis should take place for each measurement property. 
There are two options for data synthesis:Â€ quantitative analysis (statistical 
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pooling) or qualitative analysis (best evidence synthesis). We will discuss 
both options.

9.9.2â•‡ Quantitative analysis (statistical pooling)
Statistical methods exist for pooling the following statistical param­
eters:Â€ Cronbach’s alphas, correlation coefficients (intraclass, Spearman, 
Pearson), standard errors of measurement (SEMs) and minimal import­
ant change (MIC) values. The existence of a method, however, does not in 
itself guarantee that pooling is justified; other requirements must also be 
met. Pooling should only be performed if there are several studies available 
that are sufficiently similar to be able to combine their results. This similar­
ity applies not only to design characteristics (i.e. homogeneity of the study 
characteristics, as discussed in Section 9.9.1), but also to statistical homo­
geneity (i.e. similarity) of the results concerning the measurement property 
under study, (e.g. differences in ICCs). When conflicting or very different 
results are found in the included studies, pooling should not be performed. 
Another requirement is that the studies should at least be of fair methodo­
logical quality. Low-quality studies are often excluded in systematic reviews 
because the results of these studies may be biased. We know of only a few 
reviews that have performed statistical pooling of the results of measurement 
properties (e.g. Avina-Zubieta et al., 2007; Garin et al., 2009). More research 
is needed on the methodology of statistical pooling of the data from studies 
on measurement properties.

9.9.3â•‡ Qualitative analysis (best evidence synthesis)
Pooling is not an option when studies do not seem sufficiently similar, or 
when quantitative data is not available (e.g. for assessing content validity). 
However, we still have to come to a conclusion about the measurement 
property. In that case, best evidence synthesis can be performed. This is 
a qualitative analysis in which the following characteristics are taken into 
consideration:Â€ the methodological quality of the studies, consistency of 
the results, and homogeneity of the studies. Based on these characteris­
tics, the level of evidence can be determined. For example, when a low 
score for a reliability parameter (e.g. ICCâ•›<â•›0.4) is found in a number of 
studies of good methodological quality, then there is strong evidence that 
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the measurement instrument has low reliability, but when a high internal 
consistency is found in a number of studies of fair quality, there is only 
moderate evidence of high internal consistency. For reviews focusing on 
measurement properties, such levels of evidence are still under devel­
opment. It is clear, though, that they are not so straightforward, and are 
different for each measurement property. Sometimes, evidence from dif­
ferent studies should be combined, as will be shown below. Although it is 
a qualitative analysis, information about how the methodological quality 
is classified, how the consistency of the results is assessed and how the 
homogeneity of the studies is determined should be described in as much 
detail as possible. In other words, the way in which the levels of evidence 
are established should be described.

Internal consistency
In order to be able to assess the internal consistency of a measurement instru­
ment adequately, it is necessary to have information about the unidimen­
sionality of the scales (i.e. from factor analyses) and about the Cronbach’s 
alpha. This information may come from different studies. To obtain a rat­
ing of ‘strong evidence for good internal consistency’, three requirements 
should be met:Â€(1) subscales should be shown to be unidimensional; (2) high 
Cronbach’s alphas should be found in a number of studies of good meth­
odological quality; and (3) results should be consistent. For example, when 
three studies are found that show the same subscales, and all studies show 
Cronbach’s alphas between 0.85 and 0.90 for each subscale, it can be con­
cluded that there is strong evidence for good internal consistency.

Reliability
There is strong evidence for the reliability of the instrument if a number of 
studies that are of good methodological quality have consistent results. If 
inconsistent results are found, the evidence becomes weaker. The evidence 
is also weaker when high reliability parameters are only found in studies of 
fair methodological quality. When deciding about the clinical homogeneity 
of reliability studies, one should also consider design issues, for example, the 
expertise of the observers. Note that in case of observer variation, a distinc­
tion can be made between evidence for intra-observer and inter-observer 
reliability when a large number of studies is available.
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Measurement error
To evaluate the measurement error, it is necessary to have information 
about the smallest detectable change (SDC) as well as on the MIC. Again, 
this information may come from different studies. For strong evidence, the 
SDC should have been calculated (or, if possible, deduced from the data 
reported in an article) in a number of studies that are of good methodo­
logical quality. In addition, consistent findings of the MIC value should be 
obtained from a number of good quality studies. Next, an estimate should 
be made as to whether the SDC is smaller or larger than the MIC. Ideally, 
this should be based on comparing the pooled estimate of the SDC with the 
pooled estimate of the MIC. Alternatively, a qualitative assessment should 
be made. When the SDC is smaller than the MIC, important change can be 
distinguished from measurement error.

Content validity
Different aspects of content validity can be evaluated in different studies. 
There is strong evidence for good content validity if all four aspects have 
been adequately evaluated with positive results in good quality studies (i.e. 
there is evidence that all items are considered to be relevant for the con­
struct, purpose and target population, and the instrument is considered to 
be comprehensive). There is weaker evidence if only two or three aspects 
have been evaluated (i.e. the items are to be considered relevant for the con­
struct or target population).

Construct validity and responsiveness (hypotheses testing)
Validation is an ongoing process, and the results of different studies can be 
combined to obtain a complete list of all hypotheses that have been tested 
and to consider the number and types of hypotheses that have been con­
firmed or rejected. For example, one could use the criterion that 75% of the 
hypotheses should be confirmed to indicate adequate validity, as suggested 
by Terwee et al. (2007). In a systematic review, this criterion is not applied 
to each individual study, but to the combined results from all studies of suf­
ficient methodological quality and similarity with regard to the study char­
acteristics. Thus, all the evidence from all included studies will be combined 
for the assessment. How the strength of the hypotheses should be taken into 
account, needs to be studied in more detail.
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9.9.4â•‡ Adequacy of the measurement properties
Criteria for adequacy should be applied to the combined results of the 
included studies. There are no consensus-based criteria available for the 
adequacy of a measurement property. We have given suggestions for such 
criteria throughout the book, even though they are arbitrary. Nunnally and 
Bernstein (1994) proposed a Cronbach’s alpha between 0.70 and 0.90 as a 
measure of good internal consistency. In our experience, however, many 
good (subscales of) questionnaires have higher Cronbach’s alphas. We give a 
positive rating for internal consistency if factor analysis has been applied and 
Cronbach’s alpha is between 0.70 and 0.95 (see Section 4.5.2). For reliabil­
ity, an ICC value of 0.70 is considered acceptable (Nunnally and Bernstein, 
1994), but values greater than 0.80 or even greater than 0.90 are much bet­
ter (see Section 5.6). For an adequate measurement error, the SDC should 
be smaller than the MIC value (see Section 8.5.5). For construct validity, 
based on hypotheses testing we arbitrarily decided that 75% of the hypoth­
eses should be confirmed.

Other researchers may have good reasons to differ from our sugges­
tions, but the reasons for applying stricter or more lenient criteria should 
be explained. Quality criteria for measurement properties were suggested 
by Terwee et al. (2007). These criteria combine standards for the methodo­
logical quality of studies with criteria for the adequacy of the study results. 
Nowadays, we recommend that the COSMIN checklist should be used to 
assess the methodological quality of studies (as explained in Section 9.6), 
but the criteria suggested by Terwee et al. could be applied to assess the 
adequacy of the measurement properties. Although these criteria were 
developed for (multi-item) health status questionnaires, they can also be 
applied to performance-based tests and other measurement instruments. As 
the criteria for the adequacy of measurement properties are continuously 
being improved and refined, we refer to our website www.cosmin.nl for up-
to-date criteria.

9.10â•‡ Overall conclusions of the systematic review

To draw an overall conclusion about quality of an instrument to measure a 
specific construct, or to select the best measurement instrument for a par­
ticular situation, all measurement properties should be considered together. 
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The number of studies in which the measurement properties of the instru­
ment is investigated, the methodological quality of these studies, and (the 
consistency of) the results of the studies should be taken into account. 
Conclusions should be drawn from studies with sufficient homogeneity (i.e. 
similarities with regard to the construct measured), the purpose of the study 
and the study population.

It is important that the conclusions of the review are fully transpar­
ent and justified. Therefore, reviews should present in detail the methods 
and criteria used in the data-synthesis process, i.e. how they combined 
information about the methodological quality and the results of various 
studies.

Throughout this book, we have emphasized that one cannot talk about the 
quality of a measurement instrument in general, but that this should always 
be considered within the context of a specific study population and pur­
pose. This should also be made explicit in the systematic review. It should 
first be expressed in the research question, and then in the inclusion and 
exclusion criteria. During data extraction it is important to assess the study 
population characteristics (generalizability) for each measurement prop­
erty separately, in order to be able to assess the (dis)similarities of the study 
populations. This eventually has consequences for the data synthesis and 
conclusions of the review. Thus, a systematic review may conclude that a 
measurement instrument is (the most) appropriate to measure a construct 
in one specific population or setting, but make no judgement about its use in 
other situations. Therefore, the key elements of the research question should 
be reflected in the review conclusions.

For most reviews performed until now, the conclusion is that there is 
insufficient evidence on most of the measurement properties. This does 
not mean that these are poor measurement instruments, it just means that 
there are no studies or only low-quality studies in which their measurement 
properties are assessed. Thus, the results of a systematic review also clearly 
reveal gaps in research. When instrument content seems promising, but its 
measurement properties are inadequately investigated, the conclusion can 
be drawn that more and better research on its measurement properties is 
needed. Note that measurement instruments with low content validity are 
not worthwhile enough to be examined further. In this way, a systematic 
review can set the agenda for further research on measurement properties.
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9.11â•‡ Report on a systematic review of measurement properties

Guidelines for reporting systematic reviews have been published in the 
PRISMA Statement (available on www.prisma-statement.org). PRISMA stands 
for Preferred Reporting Items for Systematic Reviews and Meta-Analyses. It is 
a 27-item checklist, representing a minimum set of items for reporting in sys­
tematic reviews and meta-analyses. Although the PRISMA Statement focused 
on randomized trials, it can also be used as a guideline for reporting systematic 
reviews of other types of research, such as systematic reviews of measurement 
properties. In these guidelines, important issues about the title, abstract, intro­
duction, methods, results, discussion and funding of the study are included.

The requirements on reporting of methods have been covered in the pre­
ceding sections. This section focuses on data presentation and, in particu­
lar, gives examples of tables that can be presented in the results section of 
a systematic review article. A systematic review of measurement properties 
should, at least, give information about the following issues:Â€(1) results of the 
literature search and selection of the studies; (2) methodological quality of 
the included studies; (3) characteristics of the included measurement instru­
ments; (4) characteristics of the included study populations; (5). adequacy/
results of the measurement properties; and (6) the conclusion about the best 
measurement instrument. On each of these issues we will remark briefly, 
give an example or refer to the corresponding section in this chapter. For 
more examples we refer again to www.cosmin.nl.

1:Â€Results of the literature search and selection of the studies
The results of the literature search and selection of the studies can best be sum­
marized in a flow chart as presented in Figure 9.1. The PRISMA Statement also 
includes an example of such a flow chart. Note that in a systematic review on 
measurement properties the number of studies that provides relevant infor­
mation may vary per measurement property. However, instead of drawing a 
flow chart for each measurement property, usually the flow chart includes all 
studies providing any information on one or more measurement properties.

2:Â€The methodological quality of each study
The methodological quality of each study should be presented per measure­
ment property. As an example, we present a table about questionnaires to 
measure neck pain and disability (own data).
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In Table 9.7 the 13 studies that presented information on the Neck 
Disability Index (NDI) are shown. The rating of the methodological quality 
of these studies ranged from excellent, good, moderate to poor. These scores 
were obtained by using a preliminary (self-developed) scoring system based 
on the COSMIN checklist (see www.cosmin.nl). For many measurement 
properties in this study, only fair or poor studies are available. This weakens 
the ability to draw strong conclusions on the quality of the measurement 
properties of the NDI.

3:Â€Characteristics of the included measurement instruments
An example of a table with instrument’s characteristics, derived from a 
review by Bot et al. (2004b) on shoulder disability questionnaires, is pre­
sented in Table 9.8. Note that the target population refers to the popula­
tion for which the measurement is developed, while the study population 
refers to the population in which the measurement properties were evalu­
ated. For example, the Disabilities of the Arm, Shoulder, and Hand Scale 
(DASH) is developed as a generic measure for patients with all kinds of 

Table 9.7â•‡ Methodological quality per measurement property for each study evaluating the 
Neck Disability Index

Study
Internal 
consistency

Measurement 
error Reliability

Content 
validity

Structural 
validity

Hypotheses 
testing Responsiveness

NDI

Study 1 poor poor
Study 2 poor poor
Study 3 fair fair fair
Study 4 poor poor fair
Study 5 poor poor poor poor
Study 6 excellent good good
Study 7 poor fair
Study 8 good poor
Study 9 fair
Study 10 fair poor poor poor
Study 11 fair fair poor
Study 12 poor poor fair fair poor
Study 13 poor good
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upper extremity disorders, but Bot et al. (2004b) only selected studies in 
which the measurement properties of the DASH were examined in patients 
with shoulder disability, the topic of their review. If different versions of the 
same instrument are included in the systematic review this should become 

Table 9.8â•‡ Description of characteristics of shoulder disability questionnaires

Questionnaire
Target 
population Domains

Number 
of scales

Number 
of items

Number 
of 
response 
options

Range 
of 
scores

Time to 
administer 
(min)

SDQ-UK Shoulder 
symptoms

Physical, 
emotional, 
social

1 22 2 0–22 ?

SIQ Shoulder 
instability

Pain 
symptoms, 
physical, 
emotional

1 12 5 12–60 ?

OSQ Shoulder 
operation

Pain, 
physical

1 12 5 12–60 ?

SDQ-NL Soft tissue, 
shoulder 
disorders

Pain, 
physical, 
emotional

1 16 3 0–100 5–10

RC-QOL Rotator cuff 
disease

Pain 
symptoms, 
physical, 
emotional, 
social

1 34 VAS 0–100 ?

DASH Upper 
extremity

Pain 
symptoms, 
physical, 
emotional, 
social

1 30 5 0–100 <5

Adapted from Bot et al. (2004b), with permission.
SDQ-UK, Shoulder Disability Questionnaire UK version; SIQ, Shoulder Instability Questionnaire; 
OSQ, (Oxford) Shoulder Questionnaire; SDQ-NL, Shoulder Disability Questionnaire Dutch 
version; RC-QOL, Rotator Cuff Quality of Life Measure; DASH, Disabilities of the Arm, Shoulder, 
and Hand Scale; VAS, visual analogue scale.
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clear in the table on the instruments’ characteristics (see SDQ-UK and 
SDQ-NL in Table 9.8).

For multi-item instruments a content comparison of the included instru­
ments, as presented in Table 9.6, may sometimes be helpful.

4. Characteristics of the study population
By constructing a table about the characteristics of the study samples, one 
has to keep in mind that this table should contain all information that is 
important for the generalizability of the results and to decide about similar­
ities or dissimilarities of study samples for data synthesis. For the readers it 
should be clear why certain subgroups have been considered in the review. 
For example, when some studies have included patients with acute shoul­
der complaints, and other studies patients with chronic complaints, the evi­
dence on the reliability of the instruments might be presented for acute and 
chronic patients separately.

Table 9.9 presents the study population characteristics in a systematic 
review on health-related quality of life instruments for patients with diabetes 
(El Achhab et al., 2008). Important characteristics are the country where the 
study is performed, sample size of the study, age and gender distribution of 

Table 9.9â•‡ Characteristics of included study populations in the review on health-related quality 
of life instruments for adults with diabetes

Instrument Country n
Mean age 
(year)

Gender 
(%male)

Diabetes type/treatment 
(n)

Duration 
(year)

ADS USA 200 58.4 100 Insulin (132) 15
ADDQol UK, 

Bromley
102 61.6 54 Insulin/diet (38)

tablet/diet (33), diet (30)
7.3

UK, 
Cambridge

52 52.4 54 Insulin/diet (32)
Tablet/diet (14), diet (6)

12.7

Portugal 100 61.3 46 Type 2 (73), Type 1 (27) 12
D-39 USA 516 52.4 46.5 Type 1 (159), Type 2 

(330)
14.2

165 61.7 44.8 Type 1 (31), Type 2 (128) 11.5
262 55.3 35.5 Type 1 (25), Type 2 (218) 10.1

Adapted from El Achhab et al. (2008), with permission.
ADS, appraisal of diabetes scale; ADDQol, audit of diabetes-dependent quality of life; D-39, diabetes-39.
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the population, type of diabetes and type of treatment and duration of the 
disease. Using the COSMIN generalizability items as guidance, we can eas­
ily see that information is missing on setting, language of the questionnaire 
(although the country is mentioned), method of patient selection and per­
centage of missing values. This table shows whether the samples are similar 
or not, and helps in deciding about the proper way of data synthesis.

5:Â€Results for the measurement properties
In order to provide full information and transparency it is recommended to 
present the full results separately for the measurement properties found in 
each study. An example of such a presentation can be found in Marinus etÂ€al. 
(2002) who evaluated the reliability, validity and responsiveness of quality-
of-life measures for use in patients with Parkinson’s disease. They found 21 
studies addressing five scales, one of which was the questionnaire called 
Parkinson LebensQualität (PLQ), a German Parkinson quality of life ques­
tionnaire. The results of the studies assessing the measurement properties of 
the PLQ can be found in Table 9.10.

The tables presenting the results of each measurement property may 
become huge, especially when there is a large number of studies and, for 
example, when a large number of hypotheses have been tested to assess con­
struct validity in some studies. Therefore, these overview tables may be pre­
sented in an appendix or on a website (see, for example, Bot et al., 2004b 
who published two appendices on a website). These tables are important to 
publish for reasons of transparency, because they contain the raw data that 
are later summarized by the authors in the process of data synthesis. When 
readers would like to make other choices in the data synthesis process, these 
tables provide the information to do so.

6:Â€Conclusion about the best measurement instrument
In order to come to a transparent conclusion of the review we recom­
mend presenting an informative overview, listing all measurement instru­
ments andÂ€a score for each measurement property. An example is shown in 
TableÂ€9.11 (own data), presenting the results of a systematic review on the 
measurement properties of eight neck-specific questionnaires measuring 
pain or disability in patients with non-specific neck pain.
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An overall score for each measurement instrument and each measure­
ment property is presented. In this overall score, the methodological quality 
of the study and the results of the measurement properties are combined. 
For example, a score of +++ for internal consistency of the NDI means there 

Table 9.10â•‡ Results of measurement properties of health-related quality of life scales for 
Parkinson’s disease

Reliability Validity

Scale
Internal 
consistency Test–retest Content Construct Factorial Responsiveness

PLQ Alpha Total 
scale:Â€0.95

Total scale:  
r = 0.87

++ Generic 
health-related 
quality of life 
scales:Â€EORTC 
QLQ 30:  
r = 0.67  
(n = 111)

9 subscales, 1 
or 2 factors/
subscale >â•›50% 
variance

2-week interval
No external 
criterion

Alpha 
subscales: 
0.62–0.87

Disease-specific 
measures:

Depression (n = 16)

Correlation
subscale – 
total scale:

Subscales:  
r = 0.69–0.86

H and Y:  
r = 0.27,  
NS (n = 21–29)
SES:Â€r =Â€–0.27, 
NS, (n = 21–29)

Physical 
achievement
Leisure

r = 0.73–0.86 
(n = 405)

(n = 65;  
14 days)

Other measures:
Quality of life 
VAS:Â€r = 0.28, 
NS (n = 21–29)
ADL scale:  
r = 0.73  
(n = 111)

Concentration
Social 
integration
Insecurity
Restlessness
Activity 
limitation
Anxiety

n, number of patients; alpha, Cronbach’s alpha; r, Pearson; ++, adequate; PLQ, Parkinson 
Lëbensqualität; SES, Schwab and England scale; H and Y, Hoehn and Yahr staging; NS, not 
significant.
Adapted from Marinus et al. (2002), with permission.
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is consistent evidence from multiple studies of good methodological quality 
for good internal consistency of this questionnaire. There was conflicting 
evidence from multiple studies of fair quality for the responsiveness of this 
questionnaire. Additional studies on responsiveness of the NDI are required. 
Methods and criteria used in the process of data synthesis (i.e. how informa­
tion on the methodological quality and results of various studies was com­
bined) should be clearly described.

In some studies, the authors report the outcome for the quality of the 
studies and for the results of a study, separately. An example of this was pro­
vided by Marinus et al. (2002). In addition to the raw data on measurement 
properties, shown in TableÂ€9.10, they gave per measurement instrument, 
overall ratings of each measurement property combining multiple studies. 
They gave ratings of the results of each measurement property (i.e. before 
the slash) and ratings of the methodological quality of these studies (i.e. 
behind the slash) (TableÂ€9.12). These overall ratings for quality and results 
are some kind of qualitative summary of the studies. In the article, they 
refer to certain standards to assess the quality of the studies and criteria to 
rate the results of the measurement properties for individual studies, but 
information about how they combined these when more studies examined 
the same instrument was lacking.

Table 9.11â•‡ Quality of measurement properties per questionnaire

Question-
naire

Internal 
consistency

Measurement 
error Reliability

Content 
validity

Structural 
validity

Hypothesis 
testing

Respon-
siveness

NDI +++ ? - + CE +++ CE
NPDS ? NA ? ? + + +
NBQ ? ? ? NA NA + +
NPQ ? ? ? ? NA + ++
WDQ ++ ? ? ? + ? +
CNFDS ? NA ? ? NA + +
CNQ NA NA + ? NA + NA
CWOM ? NA NA NA NA + +

+++ orÂ€–, strong evidence positive/negative result; ++ orÂ€–, moderate evidence positive/negative 
result; + orÂ€–, limited evidence positive/negative result; CE, conflicting evidence; ?, unknown, due 
to poor methodological quality; NA, no information available.
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In order to grade the evidence on each measurement property the quality 
of the studies should be integrated with the results of the studies. However, 
the methodology to do this is not well developed yet. For future develop­
ments see www.cosmin.nl.

9.12â•‡ State of affairs

On several occasions in this chapter, we have stated that the methodology of 
systematic reviews on measurement properties is still under development. 
Nevertheless, as the number of such systematic reviews is increasing rap­
idly, we wanted to give the reader some guidance on how to perform these 
reviews. This last section describes the state of affairs and at the same time 
puts forward the research agenda for the near future.

With the development of the COSMIN checklist (Mokkink et al., 2010b) 
an instrument to assess the methodological quality of studies on measure­
ment properties has become available. However, a rating system to classify 
the methodological quality of the studies as excellent, good, fair or poor 
quality is still in development. Moreover, methods to combine evidence on 
measurement properties from different studies are not well worked out yet. 

Table 9.12â•‡ Quality assessment table

Scale
Internal 
consistency

Test–retest 
reliability

Content 
validity

Construct 
validity Responsiveness

PDQ-39 +++/+++ +++/+++ ++/+++ +++/+++ ++/+
PDQL +++/+++ 0 ++/++ +++/+++ 0
PIMS +++/+++ +++/+++ ?/– ?/– 0
PLQ +++/+++ +++/+++ ++/+++ +/++ –/–

+++/+++:Â€signs before the slash refer to results of validity, reliability and responsiveness testing 
and signs behind the slash refer to thoroughness (strength of evidence) of validity, reliability and 
responsiveness testing.
Results of validity, reliability and responsiveness testing:Â€0, no numerical results reported; ?, results 
not interpretable;Â€–, poor results; + fair results; ++, moderate results; +++, good results.
Thoroughness of validity, reliability and responsiveness testing:Â€0, no reported evidence; ?, results 
not interpretable;Â€–, poor evidence; +, fair evidence; ++, moderate evidence; +++, good evidence.
Marinus et al. (2002), with permission.
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It is evident though that these methods may differ per measurement prop­
erty. More work needs to be done on the methodology of data synthesis for 
measurement properties, and this holds for statistical pooling as well as for 
best evidence syntheses.

Lack of good reporting of primary studies is a problem when conducting 
a systematic review. Poorly reported studies will limit the reader’s ability 
to assess the methodological quality of a study. Therefore, in the fields of 
RCTs or diagnostic research, reporting guidelines for primary studies are 
developed, such as the CONSORT statement (Schulz et al., 2010), or the 
STARD statement (Bossuyt et al., 2003). Reporting guidelines for studies 
on measurement properties do not exist, yet. However, much information 
about relevant items can be deduced from the COSMIN checklist. In other 
words, the COSMIN checklist can be used as a guide when preparing a pub­
lication of a study evaluating measurement properties.

9.13â•‡� Comprehensiveness of systematic reviews of measurement 
properties

A systematic review on measurement properties consists of a collection of 
separate systematic reviews per measurement property. That these are sep­
arate reviews becomes visible in the number of studies that contribute data 
to each measurement property, a separate set of items (COSMIN box) per 
measurement property to appraise the methodological quality of the studies 
and separate methods of data synthesis per measurement property. However, 
to draw conclusions about the choice of the best measurement instrument in 
a particular situation, the results of multiple measurement properties should 
be taken into account. Therefore, a systematic review usually contains infor­
mation on all measurement properties.

To demonstrate the extensiveness of these reviews we compare them 
with reviews of RCTs. To draw a conclusion about the best intervention 
for a specific health problem, a systematic review should summarize and 
combine the evidence on the effectiveness, the costs and on side-effects 
of all available interventions. However, usually only effectiveness or only 
side-effects are studied. Moreover, usually only one or two interventions 
are studied and not all available interventions. So to make a decision on the 
best intervention, information is needed from different systematic reviews. 
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In contrast, in systematic reviews of measurement properties all informa­
tion to decide on the best instrument is provided in one review. However, 
if much evidence is available it is better to write an informative review on a 
few measurement instruments, or separate reviews for each measurement 
property than to write a superficial mega-review that lacks much relevant 
information.

9.14â•‡ Summary

A systematic review of measurement properties aims to find all evidence 
on the measurement properties of one or more measurement instruments, 
to evaluate this evidence and to come to a conclusion about the quality of 
each measurement instrument. When the aim is to select the best instru­
ment available for a particular purpose, all instruments and all measurement 
properties should be included in the review. In a review on measurement 
properties the content of the instruments is described, the methodological 
quality of the studies on measurement properties are critically appraised and 
reported, and the results on the measurement properties are summarized. 
The research question of the review contains as key elements the construct 
and target population of interest, type of measurement instrument, and 
measurement properties on which the review focuses.

In order to identify all relevant articles a number of databases should 
be used, including MEDLINE and EMBASE, and the search terms should 
include all synonyms for the construct of interest and the target popula­
tion. A sensitive methodological search filter to identify studies on meas­
urement properties in MEDLINE through PubMed is available. Based on 
the abstracts or full articles of the retrieved references, relevant articles are 
selected by applying strictly formulated inclusion and exclusion criteria, by 
two reviewers independently of each other. This process of searching and 
section should be documented in a flow chart.

The next step is the appraisal of the methodological quality of studies 
evaluating measurement properties, for which the COSMIN checklist can 
be used. This checklist contains items to appraise the methodological qual­
ity of the assessment of each measurement property, items to consider the 
generalizability and items to appraise the quality of IRT methods when they 
are used.
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Data extraction includes characteristics of the instruments, characteris­
tics of the study populations, and results of the measurement properties. 
Characteristics of the study populations are important to consider the 
generalizability of the results and later on, to judge the (dis)similarities of 
the study populations included in the review. In case of multi-item instru­
ments, characteristics of the instrument may be supplemented by a content 
comparison.

Before data synthesis, first the homogeneity of the study characteristics 
should be considered. Only results of similar study populations should be 
combined. This can be done by statistical pooling or by a best evidence 
synthesis. For both strategies, methods are still under development. The 
adequacy of the measurement properties should be considered for the com­
bined set of studies. Sometimes evidence for the results of one measurement 
property is found in different studies (e.g. some studies evaluate the data 
structure of the instrument, while others provide data on the internal con­
sistency of the (sub)scales).

To draw an overall conclusion on the quality of a measurement instrument 
to measure a specific construct or to select the best measurement instrument 
for a particular situation, the number of studies in which the measurement 
properties of the instrument is investigated, the methodological quality of 
these studies on measurement properties, and consistency of the results of 
those studies should be taken into account.

Conclusions should be drawn over studies with sufficient homogeneity 
(i.e. similarities with regard to construct measured, purpose and study 
population). When insufficient data are available to draw conclusions about 
the measurement instruments, the review often provides guidance for fur­
ther research. The key elements of the research question should be reflected 
in the review conclusions.

Reports of systematic reviews of measurement properties should 
include:Â€(1) results of the literature search and selection of the studies; (2) 
methodological quality of the included studies; (3) characteristics of the 
included measurement instruments; (4) characteristics of the included study 
populations; (5) raw data on the measurement properties; (6) results of the 
data synthesis; and (7) conclusion about the best measurement instrument. 
Extensive tables can be placed in appendices or on a website.
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Assignments

1.â•‡ Evaluate the methodological quality of a study with the COSMIN checklist
At www.clinimetrics.nl you find a link to the open access paper of Van den 
Bergh et al. (2009).

Read the article and rate the methodological quality of the study, using 
the COSMIN checklist. For instructions to complete the COSMIN checklist 
we refer to the COSMIN manual to be found at www.cosmin.nl.

2.â•‡ Data synthesis of eight studies on the reliability of one instrument
This exercise might be good to perform with two people or in a small group 
to have some discussion.

The Quebec Back Pain Disability Scale (QBPDS) is a self-report ques­
tionnaire that aims to measure disability in patients with non-specific low 
back pain, developed by Kopec et al. (1996). Disability was defined as:Â€‘any 
restriction or lack of ability to perform an activity in a manner or within 
the range considered normal for a human being’. The QBPDS consists of 
20 items, regarding difficulty experienced while performing simple tasks in 
six domains (bed/rest, sitting/standing, ambulation, movement, bending/
stooping, handling large/heavy objects). The items are scored from 0 to 5, 
and summarized in one total score. A full copy of the questionnaire can be 
found on our website www.clinimetrics.nl.

Eight studies have been published on the reliability of the QBPDS total 
score in different patient populations and countries. We have summarized 
the characteristics of the studies and study populations, the methodological 
quality of the studies, and results of the studies in a number of tables. Go 
to the website www.clinimetrics.nl to download and read the document 
‘Tables for Assignment 2 Chapter 9.pdf ’. You don’t need to read the articles 
for this assignment, but you can find the references on the website.

Read Table 9.13 (www.clinimetrics.nl). In this table the characteristics of 
the eight included studies are described in terms of study population, dur­
ation of complaints, age and gender, country and setting in which the study 
was performed.

(a)	 What are the main important differences between the studies and which 
studies do you consider sufficiently similar to be synthesized?
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The methodological quality of each study was assessed using box B (reli­
ability) of the COSMIN checklist. For this study, we used a special version of 
the COSMIN checklist, with a four-point rating scale, which is described in 
Table 9.14 (www.clinimetrics.nl). Each item was scored as excellent, good, 
fair or poor. This four-point rating system allows to determine a total quality 
score per box. The quality score is obtained by taking the lowest rating of any 
item in the box. Thus, if one item is scored ‘poor’, the quality rating of the 
study will be ‘poor’, regardless of the ratings of other items.

Read Table 9.15 (www.clinimetrics.nl). In this table, you will find the 
scores for each COSMIN item on the four-point rating scale. A description 
is provided in addition to the scores. Moreover, for each study a total quality 
score is provided.

(b)	 How would you deal with differences in the methodological quality of 
the studies in your data synthesis?

Read Table 9.16 (www.clinimetrics.nl). In this table, the results of the eight 
studies are presented with values for the ICCs that were found.

(c)	 Do you consider the results of the measurement properties consistent or 
not?

Read Table 9.17 (www.clinimetrics.nl). In this table you will find a descrip­
tion of levels of evidence that can be applied to combine the results of dif­
ferent studies.

(d)	 Which level of evidence would you apply to the results of these eight 
studies?

(e)	 What would be your overall conclusion about the reliability of the 
QBPDS?
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Bland and Altman method 113, 163, 166, 
243

Bland and Altman plot 113–114, 163, 
167

interpretation of 122–123
limits of agreement 113–114, 122–123, 

167, 217, 242, 260

blood pressure 122, 128, 131–137,  
239

causal indicator 14
ceiling effect, seeÂ€floor and ceiling effects
change 241

amount of change 257
change beyond measurement error 

123
clinically important change 204
clinically relevant change 123, 245
global rating of change 214, 256
important change 204, 257
magnitude of change scores 216
minimal detectable change 243, 

seeÂ€smallest detectable change
minimal important change (MIC) 123, 

217–218, 245, 299–300
anchor-based method 246–247,  

258
distribution-based method 246–247, 

258
for deterioration 258
for improvement 258
mean change method 246
ROC method 246, 248–249, 254
visual anchor-based MIC distribution 

247, 249, 252–253, 255
minimal real change 243, seeÂ€smallest 

Â�detectable change

Index 
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real change 123, seeÂ€smallest detectable 
change

smallest detectable change (SDC) 
123, 217, 242–245, 258–261, 
299–300

statistical significance of 216, 245
true change 204, 243, 266

classical test theory (CTT) 13, 18–20, 68, 
72, 80, 100

basic formula 19, 137, 143, 186
clinical knowledge 193
clinician’s perspective 245, 256
clinimetrics 2
coefficient of variation 115
communality, seeÂ€factor analysis
components 75, seeÂ€factors
comprehensibility 58, 60, 184
comprehensiveness 43, 155–157, 299
computer adaptive testing (CAT) 26, 38, 

141
conceptual framework 9, 13–18, 42, 44, 

187, seeÂ€framework
conceptual model 7–13, 33, 79, 151, 156, 

173, 205
concordance 97, seeÂ€reliability
consistency 97, seeÂ€reliability
construct 13, 14, 33, 35, 45, 151, 156, 205, 

279, 282
complex construct 15, 151–152
definition of 31, 33, 279
development of 193
dimensionality of 169–185
multidimensional construct 12, 52
non-observable 12–13, 17
observable 12–13, 17
unidimensional construct 12, 20
unobservable construct 17, 19–20, 55, 

65, 150
construct validity, seeÂ€validity

COOP-WONCA scales 46, 179–181

correlation 
correlation matrix 73, 75
direction and magnitude of 174, 180, 

211–212
item-total correlation 81–82
inter-item correlations 72, 80–81, 84
of change scores 211
P values of 212
polychoric correlations 80
sample size 191
statistical significance of 181
tetrachoric correlations 80

correlation coefficient 163
intraclass correlation coefficient (ICC) 

103–110, 127, 163, 300
confidence interval (CI) 127
for single measurements 103–107, 

143
for averaged measurements 107–110, 

143
for agreement (ICCagreement) 106–107, 

110, 119
for consistency (ICCconsistency) 

105–107, 110
interpretation of 120
sample size calculation 127

Pearson’s correlation coefficient 80, 98, 
110, 163

Spearman’s correlation coefficient 163
COSMIN 

boxes 286–287
checklist 284–287, 289, 293, 300, 303, 

309
four-step procedure 285–286

manual 285–286
scoring system 291, 303, 309
study 3
taxonomy 3, 4, 97, 286
terminology 3
website 286
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Cronbach’s alpha 81–84, 112, 137–139, 
243, 298, 300

‘alpha if item deleted’ 82–83
interpretation of 83–84
as reliability parameter 137–139

cultural adaptation 181–183
cultural differences 185, 191

data structure 65
Decision studies (D studies) 137

design of measurements 136
dependability 97, seeÂ€reliability
difference 241

direction and magnitude of 174, 177, 
180–181

statistical significant 212
systematic difference 104, 113–114, 

121
true difference 132

differential item functioning (DIF) 182, 
185–186, 188–189

non-uniform 186–189
uniform 186–189

dimension 66, 74
number of dimensions 72
underlying dimensions 72

dimensionality 65, 71, 80
examination using CTT 72
examination using IRT 80
multidimensionality 80
of constructs 169–185
optimizing 77

discrimination 
between patients 89, 91, 101
discrimination parameter, 

seeÂ€parameter
discriminative 

discriminative ability 69, 139, 210
discriminative function 232
discriminative power 69, 

seeÂ€discriminative ability
discriminative purpose 34, 44–45, 123, 

156
distribution 

of change scores 248
of items scores 68, 85, 91
of marginals 121
of population scores 70, 90–91
of scores 228–235

using CTT methods 230–231
using IRT methods 231–235

effect indicator 13
effect size 215–216, 218–219, 247
eigenvalue, seeÂ€factor analysis
equivalence 

of factor loadings 186
of intercepts 186
of items 189
of scores 182, 185

error term 18–19, 100, 114
random error 104, 107, 110, 114, 145
systematic error 107, 110, 111

evaluative purpose 34, 44–45, 156, 159, 
202–203

expert 38
expert committee 184
expert panel 156–157
language expert 184

external criterion 55, 246, 247

factors 73, 186
number of factors 74
interpretation of 77

factor analysis 51, 65–66, 71, 81, 169–185, 
266–267, 298, 300

common factor analysis 72
communality 73–74, 77
confirmatory factor analysis (CFA) 72, 

79, 169–188, 266
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eigenvalue 74–78
exploratory factor analysis (EFA) 72, 

169–185, 186
factor loadings 73–74, 77–78, 186
factor model 171
fit index 155, 170
hypothesized structure 72, 170–192
item loadings 73
multiple group factor analysis 186, 191
principal components analysis (PCA) 

72, 76
rotation 77
sample size 65, 80, 191
scree plot 75, 77
structure 65, 72, 74, 186

feasibility 59, 60, 292
Feinstein 2, 18
field testing 31, 92
floor and ceiling effects 91, 216, 232–235
focus group 38, 70
Food and Drug Administration (FDA) 

152, 296
formative element 15, seeÂ€formative model
formative and reflective models 13–18, 

43–45, 83–84
formative model 14, 17–18, 42, 50, 55, 

65–66, 70
form of administration 152
four-dimensional symptom questionnaire 

(4DSQ) 19, 50
framework 

conceptual framework 9, 13–17, 18, 
42, 44

content framework 156
frequency distribution 85–86

Generalizability and Decision studies (G 
and D studies) 131–137

Generalizability studies (G studies) 
131–135

Generalizability coefficient (G 
coefficient) 131–132, 135–136, 
138, 145

for agreement (Gagreement) 133, 137
for consistency (Gconsistency) 133–135

global rating scale 207, 241, 250
gold standard 150, 159, 160, 163–165, 

194, 202, 206–209
continuous 208
dichotomous 208
ordinal 208

Guttman scale 21, 238
Guyatt’s responsiveness ratio 217–218, 

259–260

health-related quality of life (HRQL) 7, 9, 
10, 39, 57

hierarchical order 21, 43, 238
hypotheses 

a priori defined hypotheses 72, 211, 
218

confirmation and rejection of 175, 205, 
214

formulate hypotheses 151, 173, 205
number of 205
specific hypotheses 151, 153, 169–172, 

174, 185, 211, 214, 219
testing of 151, 169–182, 202, 211, 299, 

300, seeÂ€alsoÂ€construct validity

index 49, 51–53, 70
information curve 140

amount of information 140–141
level of information 140

internal consistency 80–84, 97, 137, 139, 
298, 300

internal reliability 137, seeÂ€internal 
consistency

International Classification of 
Functioning (ICF) 46, 158
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interpretability 91, 227–268
concept of 228
of change scores 217–218

interpretation 
of change scores 241–268
of measurement properties 229
of single scores 235–241

interview 38, 70
cognitive interview 265
probing method 58
three-step test interview 59, 265

intraclass correlation coefficient, 
seeÂ€correlation coefficient

item 
item bank 38
item characteristics 80
item characteristic curve (ICC) 22–25, 

38, 85, 87–88, 139, 188
item correlation, 72, 80–81, 84, 

seeÂ€correlations inter-item
item difficulty 20, 23, 84–86, 90, 140, 

189, 231
item discrimination 84, 140, 189
item functioning characteristic 84
item level 68, 182
item loadings, 73, seeÂ€factor analysis
item location 20, 90, 231-232, 237–239
item reduction 65–66, 72, 77, 81, 

83–84, 88
item redundancy 83
item response 186
item response curve 68, seeÂ€item 

characteristic curve
item scores 46, 51, 66
item-total correlation, 81–82, 

seeÂ€correlation
item variance 69

items 
clustering of 231, 239
difficult and easy items 23, 69, 88, 91

difficulty of 43, 45, 70
formulation of 31, 41, 45, 85, 88–89
functioning of 80
importance of 66, 70
interpretation of 59
observable items 17
scarceness of 89, 91
selection of 31, 37–42, 45, 71, 85

item response theory (IRT) 18, 20–26, 38, 
65, 68, 80, 84, 169–188, 232

requirement of IRT studies 284, 286
sample size 65, 192

item response theory (IRT) models 85
Birnbaum model 24, 85, 87
fit of the IRT model 85
generalized partial credit model 25
graded response model 25
Mokken analysis 25
multidimensional model 25
multigroup IRT 189, 191
one-parameter logistic model 23, 85, 

seeÂ€alsoÂ€Rasch model
partial credit model 90
Rasch model 23, 85, 87, 90
two-parameter IRT model 24, 85

kappa (Cohen’s kappa) 115–119
for nominal variables 115–117
interpretation of 120–122
sample size calculation 127
unweighted kappa 118–119
weighted kappa for ordinal variables 

117–119, 163
linear weights 118–119
quadratic weights 118–119

language 152
language expert 184

latent ability 20
latent trait 20



Index333

level of ability 22, seeÂ€alsoÂ€trait level
level of measurement 162–163, 208

continuous 208
dichotomous 208
interval level 47
nominal level 46
ordinal level 46, 208
ratio level 48

Likert 
items 46
scales 66

limits of agreement, seeÂ€Bland and 
Altman method

logistic regression analysis 185–188, 191
interaction term 186
ordinal logistic regression analysis 

187–188
regression coefficient 186

measurement 
clinician-based 10
methods of, 7, 31, 35
objective 11, 97
patient-based 10, 12
standardization of 144
subjective 11–12, 97

measurement error 19, 20, 96–97, 
101–102, 104–105, 122–123, 204, 
217–218, 242–243, 299–300

parameter, seeÂ€parameter of 
measurement error

reduction of 145
measurement instrument 

application of 156
appropriateness of 275
characteristics of 10, 291–292, 303
content analysis 158
content of 275–311
development 32, 72, 89, 91, 157
format 292

evaluative 32, 123
multidimensional 36, 52, 56, 194
multi-item instrument 13, 17–18, 

36–37, 42, 50, 52, 65, 70, 81, 137, 
155

practicalities of 292
purpose of 34, 45, 156
quality of 275, 294, 301
selection of the best instrument 278, 

300, 306, 310, 311
single item instrument 17, 36–37, 207
type of 280, 291
unidimensional 31, 52

measurement invariance 169–185, 266
assessment of 169–185
dealing with 191

measurement properties 30, 279, 284, 
301, 303, seeÂ€alsoÂ€studies of 
measurement properties

adequacy of measurement properties 
296–300, 308

criteria for adequacy 300
results of measurement properties 291, 

294, 301, 306–309
study of measurement properties 

generalizability of results 284, 286, 
296, 301, 305

methodological quality of 275, 284, 
286–287, 297–298, 301–303, 
307–308

requirement of IRT studies 284, 286
risk of bias 284
standards for design 284
standards for interpretability 284
standards for methodological quality 

284
standards for statistical methods 

284
measurement scheme 129
measurement theory 7, 13, 17–26
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missing scores or values 66–68, 170–192, 
220, 290

Multidimensional Fatigue Index (MFI) 
52

multidimensional inventory 80
multifactor inventory 80
multiple indicator multiple cause 

(MIMIC) model 55
multiple measurements, seeÂ€repeated 

Â�measurements
multitrait-multimethod (MTMM) 181

Neck Disability Index (NDI) 90–91, 230, 
232–234, 303

noise 204, seeÂ€measurement error

Objectives measurements 11

paired t-test 98–99, 113
parameter 

difficulty parameter 22–25, 85–88, 
90–91, 141

discrimination parameter 22, 24–25, 
81, 85–88

of measurement error 101–102, 113, 
120, 122–124, 247

for continuous variables 111
interpretation of 122–123
IRT analysis 139–141

of reliability 101–102, 120, 123, 229
confidence interval (CI) 126,  

128
Cronbach’s alpha 137–139
for categorical variables 119
for continuous variables 103–110
interpretation of 120–122, 126
IRT analysis 139–141
summary index 140

threshold parameter 23, seeÂ€difficulty 
Â�parameter

patient 
ability 20–21, 23, 139, 141, 237–238
groups of patients 142, 244
individual patients 142, 244
perspective 245, 256
preferences 56

patient-reported outcome (PRO) 11, 17, 
30, 157, 161, 163, 207, 245

performance test 96, 125, 144, 292
physical functioning 35, 141, 158, 185, 

189, 190
pilot-testing 31, 57–60, 65, 184

of non-PRO instruments 58, 60
of PRO instruments 58

population, seeÂ€alsoÂ€sample
characteristics of 278–293, 301, 305
stable population 244
target population 34, 45, 58, 65, 152, 

156–157, 161, 168, 174, 184–185, 
279–280, 282, 303

precision 97, seeÂ€reliability
prediction 34

prediction models 35
predictive purpose 35, 156
predictive value 162, 164

preference analysis 57
principal components analysis (PCA), 

seeÂ€factor analysis 72, 76
PRISMA statement 302
profile 51–52
PROMIS 38, 141
proxy respondents 59
psychometrics 2
publication bias 281

rating 
global rating of change, seeÂ€change and 

scale
of importance 70

recall bias 256
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receiver operating characteristic (ROC) 
curve 163, 165–166, 168, 208, 
253–254

area under the curve 165, 168–169, 208
reflective model 13, 15, 17–20, 42, 50, 55, 

66, 70
regression analysis 55

regression equation 73
standardized regression coefficients 73

relevance 58, 155–157, 299
reliability 72, 96–145, 162, 194, 195, 242, 

298, 300
analysis 108
improvement of 144–145
inter-rater reliability 96–97
intra-rater reliability 96–97
of mean values 108, 137, 145
parameter, seeÂ€parameter of reliability
test–retest reliability 96–97, 243

reliability study 
crossed design 130
design of 124–131
nested design 130
sample size 126–128
time interval 125, 290

reliable change index (RCI) 243, 260
repeatability 97, seeÂ€reliability
repeated measurements 96, 100, 111, 115, 

128, 131, 135–136, 143–144
reproducibility 97, seeÂ€reliability
response option 45, 66, 68

dichotomous response 46, 85
response shift 261–268

adjustment for 267
assessment of 264–267
bias 267
conceptual model of 263–264
individualized measures 266
interpretation of 267–268
qualitative methods 264–267

quantitative methods 265–266
recalibration 262–263, 266
reconceptualization, 262, 266
reprioritization 262, 266
then-test 265, 267
theoretical model, seeÂ€conceptual 

model
responsiveness 91, 196, 202–221, 235, 299

concept of 203–206
construct approach 202, 206, 211–215
criterion approach 202, 206
definition of 203, 215
in a clinical study 220
inappropriate measures of 215–218
responsiveness study 205, 210, 211

Roland–Morris Disability Questionnaire 
(RDQ) 50, 85–89, 122, 227

rotation 77, seeÂ€factor analysis
orthogonal rotation 77
Varimax rotation 77–78

sample 
sample-dependent 138
heterogeneous sample 102, 112, 

119–120, 138, 229
homogeneous sample 101, 112, 

119–120, 138, 229
sample size 191, 220, 290
scale 49, 52, 70

average scores 50
continuous scale 163
deterministic scale 21
global rating scale 207, 241, 250–251
Guttman scale 21
hierarchical scale 21
interval scale 89
IRT scales 50
numerical rating scale 241–242
ordinal scale 68, 163
probabilistic scale 21
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scale level 66, 182
scale scores 50–51
subscale 80
types of 47
unidimensional scale 80, 83, 298
visual analogue scale (VAS) 49

score 
adjusted score 191
average score 195
change score 252, seeÂ€change and 

interpretation
clustering of 70
impact score 71
importance score 71
in formative models 51–57
in reflective models 50, 52
interpretation of 36
IRT based estimation of 231, 238
latent score 189
norm score 236
observed score 19, 98, 100, 189
population scores 70
scale score 51
single score 195
sum-scores 52, 56, 89, 239
true score 19, 20, 98, 100, 186, 195
unweighted score 51
weighted score 51, 53

scoring options 31, 46
scree plot 75, 77, seeÂ€factor analysis
SEIQOL-DW 54, 266
sensibility 18
sensitivity 162–164, 246, 252, 254
sensitivity to change 216, 

seeÂ€responsiveness
Short-Form 36 (SF-36) 152, 177, 179–

181, 187, 231–232, 236
situation-dependent 151–152, 161–162, 

174

smallest detectable change, seeÂ€change
Spearman 2
specificity 162–164, 246, 252, 254
stability 97, seeÂ€reliability
standard deviation (SD) 

half a SD (0.5 SD) 247, 259
of baseline scores 215–216
of change scores (SDchange) 216, 217, 

244, 260
of single measurement 111
of difference (SDdifference) 111, 114, 

243–244
standard error (SE) in IRT 139–142
standard error of measurement (SEM) 

101, 111–113, 243, 247, 259
SEM value 111

interpretation of 122
SEM for agreement (SEMagreement) 111, 

114
SEM for consistency (SEMconsistency) 111, 

114–115
standardized response mean (SRM) 215
structural equation modelling 56–57, 

181
structural reliability 137, seeÂ€internal 

consistency
subjective measurements 11
systematic review of measurement 

properties 30, 275–311
best evidence synthesis 297, 

seeÂ€qualitative analysis
conclusion of 300–302, 306
consistency of results 296–298, 301
data extraction 291, 301
data synthesis 286, 296–300, 306
(dis)similarity of settings 293, 296
(dis)similarity of studies 286, 297
(dis)similarity of study populations 

293, 296, 301, 305
eligibility criteria 282–283

scale (cont.)
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evidence 296
conflicting evidence 308
consistent evidence 308
indirect evidence 282
levels of evidence 298

flow chart 284–285, 302
generalizability of results 293, 296
homogeneity of studies 296–298
inclusion and exclusion criteria 282, 

301
qualitative analysis 296–298, 308
quantitative analysis 296, seeÂ€statistical 

pooling
reporting of 302–309
research question 276, 301
search strategy 281, 302

building of 279
database 279, 283
documentation of 283
language restriction 281
methodological search filter 280
reference checking 281
search terms 279–280
time-limit 281
update the search 283

similarity of studies 286
statistical pooling 297
types of 276

then-test 265, 267, seeÂ€response shift
theories, seeÂ€theories of measurement
theta, seeÂ€trait level
think aloud method 58, 265
thought test 14
time interval 125, 205, 206, 244
trait level 68, 89–91
transition question 256
translation 169–182, 185, 190

back 183
forward 182–183

units of measurement 114, 119, 122
utility analysis 56–57

validity or validation 150–196
along a clinical study 192
concept of 151–154
concurrent validity 159–160, 163–167
construct validity 72, 150, 169–191, 

194, 207, 299, 300
content validity 150, 154–158, 194, 216, 

299
continuous process 151, 153
convergent validity 173, 176–178, 181
criterion validity 150, 159–169, 191, 

194
cross-cultural validity 152, 169–181
discriminant validity 173, 176, 177, 

181
discriminative validity 173, 175–179, 

181
face validity 154–155, 194
hypothesis testing, seeÂ€hypotheses
known group validity 173, 

seeÂ€discriminative validity
longitudinal validity 196, 

seeÂ€responsiveness
of change scores 203–204, 216–218
of single scores 151, 153, 203–204
predictive validity 159, 160, 163, 165, 

167–169
sample size 191, 220
structural validity 169–181,  

194
types of 150, 154, 194

VARCOMP analysis 106
variability 97, seeÂ€reliability
variables 

categorical 48
continuous 48
discrete 48
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variance 
components of 104, 106, 129–130, 

132–133, 135–137
cumulative percentage of explained 

variance 75
due to systematic differences  

104–106
error variance 100, 104–106, 111, 132, 

134, 135
explained variance of factors 73
explained variance of items 73, 

seeÂ€communalities
observed variance 100
of patients 104, 132, 134
percentage of explained variance 

74–76, 78
remaining variance 74
residual variance 104–105, 135
shared variance 72
total variance 74, 78, 100, 132, 134
true variance 100, 132

variation 
between patients 101, 107
day to day variation 96
restriction of 144
sources of variation 96, 128–129, 136, 

145

weighting 
individual weighting 54
in formative models 57
preference weighting 56

weights 51
empirical weights 54, 57
in IRT model 51
in Rasch model 51
in two-parameter IRT model 51
judgemental weights 54, 57
method of 57
using CTT 51

WOMAC 185, 189–190, 276
Wilson and Cleary model 7–13, 15
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